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Abstract. One of the open problems in higher category theory is the sys-

tematic construction of the higher dimensional analogues of the Gray tensor
product. In this paper we begin to adapt the machinery of globular operads

[1] to this task. We present a general construction of a tensor product on the

category of n-globular sets from any normalised (n + 1)-operad A, in such a
way that the algebras for A may be recaptured as enriched categories for the

induced tensor product. This is an important step in reconciling the globular

and simplicial approaches to higher category theory, because in the simplicial
approaches one proceeds inductively following the idea that a weak (n + 1)-

category is something like a category enriched in weak n-categories. In this
paper we reveal how such an intuition may be formulated in terms of globular

operads.

1. Introduction

The subject of enriched category theory [9] and 2-category theory was brought
to maturity by the efforts of Max Kelly and his collaborators. Max also had a
hand in the genesis of the study of operads, and in [10] which for a long time
went unpublished, he layed the categorical basis for their further analysis. It is
with great pleasure that we are able to present the following paper, which relates
enriched category theory and the study of higher operads, in dedication to a great
mathematician.

Coherence issues for higher dimensional categories become interesting from di-
mension 3. In dimension 2 as is well-known, any bicategory is biequivalent to a strict
2-category. However for tricategories, there is something in between strict and weak
– namely Gray categories. These are obtained by defining a symmetric monoidal
closed structure on 2-Cat, the category of strict 2-categories and 2-functors between
them. This Gray tensor product is subtly different from the cartesian product of
2-categories, and Gray-categories are categories enriched in 2-Cat using the Gray
tensor product. The coherence theorem for tricategories [8] then says that any
tricategory is triequivalent to a Gray category. The analogous statement, using
instead strict 3-categories, is false. With strict 3-categories definable as categories
enriched in 2-Cat using the cartesian tensor product, it becomes apparent that
understanding tensor products of higher categories is fundamental for coherence.

In [6] Crans attempted to push our understanding one dimension higher by
defining a tensor product of Gray categories, the ultimate hope being that weak
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4-categories could be shown to be equivalent in an appropriate sense to categories
enriched in Gray-Cat using this new tensor product. However technical difficul-
ties abound with this approach. The tensor product in [6] is described explicitly,
and this is extremely complicated. Clearly understanding the situation in still
higher dimensions requires new ideas. Moreover this Crans tensor product is not
biclosed, and so the proposed semi-strict 4-categories are not enriched in them-
selves. From experience with enriched category theory and its uses in the study
of Gray-categories, this is a serious obstruction to the development of the theory.
However in discussions with the first named author, Crans seemed to have obtained
a proposal for subtly altering his definition so that the resulting tensor product is
biclosed, but unfortunately this was never published.

The situation is very similar to that just before the combinatorial definition
of [1] of weak ω-category as given. At that time some people had tried to give
a combinatorial definition of weak 4-category, but such attempts were extremely
complicated. The time was ripe for a new idea and [1] provided it, and in so doing
gave a language which enables one to deal with all the complexity inherent to
defining higher categories combinatorially. From our present perspective the idea
is the following. The description of any n-dimensional categorical structure X may
begin by starting with just the underlying globular data, that is, sets and functions

X0 X1
t

oo
soo

X2
t

oo
soo

X3
t

oo
soo ...

t
oo
soo

Xn
t

oo
soo

satisfying the equations ss = st and ts = tt. The elements of X0 are the objects, the
elements of X1 are the arrows and so on, and such a complex is called an n-globular
set. However at this stage no compositions have been defined, and when they are,
one has a globular set with extra structure. Thus the problem of defining an n-
categorical structure of a given type is that of defining the monad on the category
Ĝ≤n of n-globular sets whose algebras are these structures. The surprise is that this
is actually feasible, and in fact leads to a conceptual theory, because apriori one
might expect that the explicit description of these monads would be formidable.

However there are important reasons why they are not. First, the monad T≤n
for strict n-categories can be described explicitly in an appealing way using trees as
was done in [1]. Second, this monad has very good formal properties – it is a local
right adjoint monad in the sense to be recalled below – and in [15] it was shown that
such monads on presheaf categories are in fact easy to handle. In fact for every such
monad T , one can define the nerve of a T -algebra which satisfies many properties
that generalise the simplicial nerve of a category. Third, the monads that define
weaker n-categorical structures all come equipped with cartesian monad morphisms
into T≤n. Thus these monads are themselves also local right adjoints, and moreover,
we understand a lot about them combinatorially because we understand T≤n. In
fact one can define an n-operad as exactly this: a cartesian monad morphism
α : A→T≤n 1, and an algebra for it is just an algebra of A. All n-dimensional
categorical structures of interest arise as algebras of n-operads, and in [1], weak
n-categories were defined by constructing the appropriate n-operad.

1That is, A is another monad on bG≤n, α consists of a natural transformation between the

underlying functors of A and T , and this is compatible with the monad units and multiplications,

and moreover the naturality squares of α are pullbacks. In fact, by the results of section(6),
compatibility with the monad structure is a consequence of the cartesianness of α, and moreover
given A, such an α is unique if it exists.
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In this paper we begin to adapt higher operads to the task of defining tensor
products in higher category theory. An operad or monad on Ĝ≤n is normalised when
it doesn’t affect the objects. All n-dimensional categorical structures of interest
are in fact algebras of normalised n-operads. To each normalised (n + 1)-operad
A, we shall define an associated tensor product on the category Ĝ≤n. This tensor
product is lax, meaning that the coherence data for it involves non-invertible arrows.
Nevertheless, one can still define categories enriched in a lax monoidal category, and
one recovers the algebras of A as the categories enriched in the associated tensor
product. This is just the beginning. For in the case of the 3-operad for Gray
categories, the induced tensor product is on the category Ĝ≤2, whereas the Gray
tensor product lives on 2-Cat. In the sequel [3] to this paper, we shall explain
how to lift the tensor products constructed here to the category of algebras of an
appropriate operad, and in this way, recover the Gray tensor product and many
other examples including that of Crans [6].

This paper is organised as follows. In section(2) we recall the definition of
a lax monoidal category and of categories enriched therein. Multitensors, that is
lax monoidal structures, generalise non-symmetric operads, and sections(3) and
(4) explain how basic operad theory generalises to multitensors. In section(3) we
see how under certain conditions, one may regard multitensors as monoids for a
certain monoidal structure, which generalises the substitution tensor product of
collections familiar from the theory of operads. Proposition(3.3) is in fact a special
case of proposition(2.1) of [7]. Nevertheless we give a self-contained account of
proposition(3.3) and related notions, to keep the exposition relatively self-contained
and as elementary as possible for our purposes. In section(4) we explain how one
can induce a monad from a multitensor. The theory of T -multitensors, which
is the multitensorial analogue of the theory of T -operads for a cartesian monad T
described in [12], is given in section(5). If T preserves coproducts, then it distributes
over the monoid monad which we denote as M , and we obtain an equivalence
between T -multitensors and MT -operads.

From this point in the paper we begin working directly with the case T = T ,
the strict ω-category monad on the category Ĝ of globular sets. In section(6) we
give a self-contained inductive description of the monad T and develop further some
of its properties. The inductive description of T given here is closely related to the
wreath product of Clemens Berger [4]. In section(7) we give the correspondence
between normalised T -operads and T -multitensors, as well as the identification
between the algebras of a given normalised operad and categories enriched in the
associated multitensor. In the final section we explain how our results may be
adapted to normalised n-operads, that is to finite dimensions, and then explain
how the algebras of T , which we defined as a combinatorial object, really are
strict ω-categories. This last fact is of course well-known, but the simplicity and
canonicity of our proof is a pleasant illustration of the theory developed in this
paper.

2. Lax Monoidal Categories

In this section we recall the notion of lax monoidal category, which is a gen-
eralisation of the well-known concept of monoidal category. As with monoidal
categories, one can consider categories enriched in a lax monoidal category. Any
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monad T on a finitely complete category V defines a canonical lax monoidal struc-
ture T× on V, and for this structure enriched categories correspond to categories
enriched in T -Alg regarded as monoidal via cartesian product.

Given a 2-monad T on a 2-category K one may consider lax algebras for T .
A lax T -algebra structure on an object A ∈ K is a triple (a, u, σ) consisting of an
action a : TA→A together with 2-cells

A
ηA //

1A ��@@@@@@@ TA

a
}}||||||||

A

u +3

T 2A
µA //

Ta

��

TA

a

��
TA a

// A

σ +3

satisfying some well-known axioms. See [11] for a complete description of these
axioms, and of the 2-category Lax-T -Alg. When T is the identity, lax algebras are
just monads in K. The example most important for us however is when T is the
monoid monad M on CAT.

Definition 2.1. A multitensor on a category V is a lax M-algebra structure
(E, u, σ) on V. A category V equipped with a multitensor structure is called a
lax monoidal category. When u is the identity the multitensor and lax monoidal
structure are said to be normal.

We shall now unpack this definition. Since MV =
∐
n≥0

Vn a functor

E :MV→V

amounts to functors En : Vn→V for n ∈ N.
Before proceeding further we digress a little on notation. For functors of many

variables we shall use some space saving notation: we deem that the following
expressions

En(X1, ..., Xn) E
1≤i≤n

Xi E
i
Xi

are synonymous, and we will frequently use the latter, often leaving the “n” un-
mentioned when no confusion would result. In particular for X∈V and 1≤i≤n, E

i
X

denotes En(X, ...,X). We identify the number n with the ordered set {1, ..., n} and
we refer to elements of the ordinal sum n• := n1+...+nk as pairs (i, j) where 1≤i≤k
and 1≤j≤ni. Following these conventions E

i
E
j
Xij and E

ij
Xij are synonymous with

Ek(En1(X11, ..., X1n1), ..., Enk(Xk1, ..., Xknk))

and

En•(X11, ..., X1n1 , ......, Xk1, ..., Xknk)

respectively. We will use multiply indexed expressions (like E
i

E
jk

E
l
Xijkl) to more

efficiently convey expressions that have multiple layers of brackets and applications
of E’s.

The remaining data for a multitensor on V amounts to maps

uX : X→E1X σXij : E
i

E
j
Xij→E

ij
Xij
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that are natural in the arguments and satisfy

E
i
Xi

uE
i //

1

��

E1 E
i
Xi

σ
���������

E
i
Xi

=

E
i

E
j

E
k
Xijk

σ E
k //

E
i
σ

��

E
ij

E
k
Xijk

σ

��
E
i

E
jk
Xijk

σ
// E
ijk
Xijk

=

E
i
E1Xi

σ
��=======
E
i
Xi

1

��

E
i
u
oo

E
i
Xi

=

Thus a multitensor is very much like a functor-operad in the sense of [13], except
that there are no symmetric group actions with respect to which the substitutions
are equivariant2. An equivalent formulation of definition(2.1), in the language of [2],
is that a multitensor on V is a non-symmetric operad internal to the endomorphism
operad of V.

Example 2.2. A normal multitensor on V such that σ is invertible is just a
monoidal structure on V, with En playing the role of the n-fold tensor product. In
the case where V is finitely complete and En is n-fold cartesian product and for the
sake of the next example, we denote the isomorphism “σ” as

ι :
∏
i

∏
j

Xij →
∏
ij

Xij

Example 2.3. Let T be a monad on a finitely complete category V. Denote
by

kXi : T
∏
i

Xi →
∏
i

TXi

the canonical maps which measure the extent to which T preserves products. One
defines a multitensor (T×, u, σ) as follows:

T×k (X1, ..., Xk) =
∏

1≤i≤n
T (Xi)

u is the unit ηX : X→TX of the monad, and σ is defined as the composite

∏
i

T
∏
j

TXij

Q
i
kT

//
∏
i

∏
j

T 2Xij
ιµ //

∏
ij

TXij

For the remainder of this section let (V, E) be a lax monoidal category.

Definition 2.4. An E-category (X,κ), or in other words a category enriched
in (V, E), consists of

• a set X0 of objects.
• for all pairs (x0, x1) of elements of X0, an object X(x0, x1) of V. These

objects are called the homs of X.
• for all n ∈ N and (n+1)-tuples (x0, ..., xn) of elements of X0, maps

κxi : E
1≤i≤n

X(xi−1, xi)→ X(x0, xn)

called the compositions of X.

2More precisely, functor-operads in the sense of [13] are normal lax algebras for the symmetric
monoidal category 2-monad on CAT.
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satisfying unit and associative laws, which say that

X(x0, x1) E1X(x0, x1)u //

X(x0, x1)

κ

��
id

%%LLLLLLLLLLL
E
i

E
j
X(x(ij)−1, xij) E

ij
X(x(ij)−1, xij)σ //

X(x0, xmnm)

κ

��
E
i
X(x(i1)−1, xini)

E
i
κ

��

κ
//

commute, where 1≤i≤m, 1≤j≤ni and x(11)−1=x0. Since a choice of i and j ref-
erences an element of the ordinal n•, the predecessor (ij)−1 of the pair (ij) is
well-defined when i and j are not both 1. An E-monoid is an E-category with one
object.

Definition 2.5. Let (X,κ) and (Y, λ) be E-categories. An E-functor f :
(X,κ)→(Y, λ) consists of a function f0 : X0→Y0, and for all pairs (x0, x1) from X0,
arrows

fx0,x1 : X(x0, x1)→ Y (fx0, fx1)
satisfying a functoriality axiom, which says that

E
i
X(xi−1, xi)

E
i
f
//

κ

��

E
i
Y (fxi−1, fxi)

λ

��
X(x0, xn)

f
// Y (fx0, fxn)

commutes. We denote by E-Cat the category of E-categories and E-functors, and
by Mon(E) the full subcategory of E-Cat consisting of the E-monoids.

Example 2.6. A non-symmetric operad

(An : n ∈ N) u : I → A1 σ : Ak ⊗An1 ⊗ ...⊗Ank → An•

in a braided monoidal category V defines a multitensor E on V via the formula

E
1≤i≤n

Xi = An ⊗X1 ⊗ ...⊗Xn

with u and σ providing the structure maps in the obvious way. The category
Mon(E) of E-monoids is the usual category of algebras of A, and thus E-categories
are a natural notion of “many object algebra” for an operad A.

Our notation for multitensors makes evident the analogy with monads and algebras:
a multitensor E is analogous to a monad and an E-category is the analogue of an
algebra for E. In particular observe that the following basic facts are instances of
the axioms for the lax monoidal category (V, E) and categories enriched therein.

Lemma 2.7. (1) (E1, u, σ) is a monad on V.
(2) The monad E1 acts on En for all n ∈ N, that is

σ : E1 E
i
Xi → E

i
Xi

is an E1-algebra structure on E
i
Xi.

(3) With respect to the E1-algebra structures of (2) all of the components of
σ are E1-algebra morphisms.
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(4) Each hom of an E-category (X,κ) is an E1-algebra, with the algebra struc-
ture on X(x0, x1) given by

κ : E1X(x0, x1)→ X(x0, x1).

(5) With respect to the E1-algebras of (2) and (4), all the components of κ
are morphisms of E1-algebras.

Proposition 2.8. Let T be a monad on a finitely complete category V. Re-
garding T -Alg as a monoidal category via cartesian product one has

T×-Cat ∼= (T -Alg)-Cat

commuting with the forgetful functors into Set.

Proof. Let X0 be a set and for a, b ∈ X0 let X(a, b) ∈ V. Suppose that

κxi :
∏
i

TX(xi−1, xi)→X(x0, xn)

for each n ∈ N and x0, ..., xn in X0, are the structure maps for a T×-category
structure. Then by lemma(2.7) the κa,b : TX(a, b)→X(a, b) are algebra structures
for the homs, and for xij ∈ X0 with 1≤i≤k and 1≤j≤ni one has the inner regions
of

T
∏
i

X(xi−1, xi)

∏
i

TX(xi−1, xi)

∏
i

X(xi−1, xi)

T
∏
i

TX(xi−1, xi) TX(x0, xn)

X(x0, xn)

∏
i

TX(xi−1, xi)

∏
i

T 2X(xi−1, xi)

∏
i

TX(xi−1, xi)

T
Q
i
η

// Tκ //

κ

��

k

��

Q
i
κ

��

Q
i
η

//
κ

//

k

���������

Q
i
Tκ

��+
++++++

Q
i
ηT

// Q
i
µ

,,XXXXX

κ

''PPPPPP

commutative, and the commutative outer region is the associativity axiom for the
composites

κ′xi :
∏
i

X(xi−1, xi)
Q
i
η

// ∏
i TX(xi−1, xi)

κxi // X(x0, xn)

for each x0, ..., xn ∈ X0. Taking the product structure on T -Alg as normal, the
unit axiom for the κ′ is clearly satisfied, and so they are the structure maps for a
(T -Alg)-category structure. Conversely given algebra structures κa,b and structure
maps κ′xi one can define κxi as the composite

∏
i

TX(xi−1, xi)
Q
i
κxi−1,xi

//
∏
i

X(xi−1, xi)
κ′xi // X(x0, xn)
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and since the regions of

∏
i

T
∏
j

TX(x(ij)−1, xij)
∏
ij

T 2X(x(ij)−1, xij)
∏
ij

TX(x(ij)−1, xij)

∏
ij

X(x(ij)−1, xij)

X(x0, xn)
∏
i

X(xi−1, xi)
∏
i

TX(xi−1, xi)

∏
i

T
∏
j

X(x(ij)−1, xij)
∏
ij

T 2(x(ij)−1, xij)

k //

Q
ij
µ

//

Q
ij
κ

��

κ′

��

Q
i
T

Q
j
κ

��

Q
i
Tκ′

��

Q
i
κ

//
κ′

//

k //

Q
ij
κ

//Q
i
κ′

uulllllllllllll

Q
ij
Tκ

��

commute, the commutativity of the outside of this diagram shows that the κxi
satisfy the associativity condition of a T×-category structure, and the unit axiom
follows from the unit T -algebra axiom on the homs. The correspondence just de-
scribed is clearly a bijection, and completes the description of the isomorphism on
objects over Set.

Let f0 : X0→Y0 be a function,

κxi :
∏
i

TX(xi−1, xi)→X(x0, xn) λyi :
∏
i

TY (yi−1, yi)→Y (y0, yn)

be the structure maps for T×-categories X and Y , κ′xi and λ′yi be the associated
(T -Alg)-category structures, and

fa,b : X(a, b)→ Y (fa, fb)

for a, b ∈ X0 be maps in V. In the following display the diagram on the left∏
i

X(xi−1, xi)
Q
i
f

//

Q
i
η

��

∏
i

Y (yi−1, yi)

Q
i
η

��∏
i

TX(xi−1, xi)
Q
i
Tf

//

κ

��

∏
i

TY (yi−1, yi)

λ

��
X(x0, xn)

fx0,xn

// Y (y0, yn)

∏
i

TX(xi−1, xi)
Q
i
Tf

//

Q
i
κ

��

∏
i

TY (yi−1, yi)

Q
i
λ

��∏
i

X(xi−1, xi)
Q
i
f

//

κ′

��

∏
i

Y (yi−1, yi)

λ′

��
X(x0, xn)

fx0,xn

// Y (y0, yn)

explains how the T×-functor axiom for the fa,b implies the (T -Alg)-functor axiom,
and the diagram on the right shows the converse. �

3. Distributive multitensors as monoids

It is well-known that monads on a category V are monoids in the strict monoidal
category End(V) of endofunctors of V whose tensor product is given by composition.
Given the analogy between monads and multitensors, one is led to ask under what
circumstances are multitensors monoids in a certain monoidal category. One natural
answer to this question, that we shall present now, requires that we restrict attention
to distributive multitensors to be defined below. Throughout this section V is
assumed to have coproducts.
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Definition 3.1. A functor E :MV→V is distributive when for all n ∈ N, En
preserves coproducts in each variable. We denote by Dist(V) the category whose
objects are such functors MV→V, and whose morphisms are natural transforma-
tions between them. A multitensor (E, u, σ) (resp. lax monoidal category (V, E))
is said to be distributive when E is distributive.

Examples 3.2. In the case where (V,⊗, I) is a genuine monoidal category, V
is distributive in the above sense iff (X⊗−) and (−⊗X) preserve coproducts for
each X ∈ V. If in addition ⊗ is just cartesian product and T is a monad on V
whose functor part preserves coproducts, then the multitensor T× of example(2.3)
is also distributive.

When E is distributive we have

E
1≤i≤n

∐
j∈Ji

Xij
∼=
∐
j1∈J1

...
∐
jn∈Jn

E
i
Xiji

for any doubly indexed family Xij of objects of V. To characterise distributivity
via this formula we must be more precise and say that a certain canonical map
between these objects is an isomorphism. It is however more convenient to express
all this in terms of coproduct cocones. To state such an equation we must have for
each 1≤i≤n a family of maps

(cij : Xij → Xi• : j ∈ Ji)

which forms a coproduct cocone in V. Given a choice for each i of j ∈ Ji, one
obtains a map

E
i
cij : E

i
Xij → E

i
Xi•,

and distributivity says that all such maps together form a coproduct cocone. The
morphisms that comprise this cocone are indexed by elements of

∏
i

Ji in agreement

with the right hand side of the above formula. For what will soon follow it is
worth recalling that the (obviously true) statement “a coproduct of coproducts is a
coproduct” can be described in a similar way. That is, given cij as above together
with another coproduct cocone

(ci : Xi• → X•• : 1≤i≤n),

for each choice of i and j one obtains a composite arrow

Xij
cij // Xi•

ci // X•• ,

and the collection of all such composites is a coproduct cocone.
Define the unit I of Dist(V) by I1=1V and for n 6=1, In is constant at ∅. The

tensor product E◦F of E and F in Dist(V) is defined as:

(E ◦ F )n =
∐
k≥0

∐
n1+...+nk=n

E
i
Fni

and so for all k and ni ∈ N where 1≤i≤k we have maps

E
i

F
j

c
ij // E◦F

ij
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which we shall also denote by c(n1,...,nk) as convenience dictates. For all n ∈ N the
set of all such maps such that n•=n form a coproduct cocone. In the case where
E=I one has I

i
F
j

∼=∅ when k 6=1, and so

c(n) : Fn → (I ◦ F )n

is invertible, the inverse of which we denote by λ. In the case where F=I one has
E
i

I
j

∼=∅ when not all the ni’s are 1, and so

c(1,...,1) : En → (E ◦ 1)n

is invertible, the inverse of which we denote by ρ. Given E, F and G in Dist(V),
one has for all r ∈ N, mi ∈ N such that 1≤i≤r, and nij ∈ N for all i and 1≤j≤mi,
a composite

E
i

F
j

G
k

c
ij

G
k // (E◦F

ij
) G
k

c
(ij)k // ((E◦F )◦G)n••

and for all n ∈ N, the set of all such composites obtained from such choices with
n••=n forms a coproduct cocone (the coproduct of coproducts is a coproduct). For
a given choice of r, mi and nij as above one can also form a composite

E
i

F
j

G
k

E
i

c
jk // E

i
(F◦G
jk

)
c

i(jk) // (E◦(F◦G))n••

and for all n ∈ N, the set of all such composites obtained from such choices with
n••=n forms a coproduct cocone because E is distributive. Thus for each n, E, F
and G one has a unique isomorphism α, such that for all choices of r, mi and nij
with n••=n, the diagram

(1) E
i

F
j

G
k

c
ij

G
k //

E
i

c
jk ##FFFFFFFFF

(E◦F
ij

) G
k

c
(ij)k // ((E◦F )◦G)n

α

��
E
i
(F◦G
jk

)
c

i(jk)

// (E◦(F◦G))n

commutes.

Proposition 3.3. The data (I, ◦, α, λ, ρ) just described is a monoidal structure
for Dist(V). The category Mon(Dist(V)) is isomorphic to the category of distributive
multitensors and morphisms thereof.

Proof. The case of (1) for which mi=1 amounts to the commutativity of the
outside of

(E◦I
i

) F
k

c
ik // ((E◦I)◦F )n

α

��

E
i

F
k

ρ−1 F
k
>>||||| c
ik //

E
i
λ−1   BBBBB

E◦F
ik

ρ−1◦Fuu

::uuu

E◦λ−1
III

$$III

E
i
(I◦F
k

)
c
ik

// (E◦(I◦F ))n

=

=
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and the inner commutativities indicated here are obtained from the definition of
the arrow map of “◦”. But the

c
ik

: E
i

F
k
→ E◦F

ik

for all choices with n••=n form a coproduct cocone, and so the triangle in the above
diagram, which is the unit coherence for Dist(V), must commute also. For E, F ,
G and H in Dist(V) we will now see that the corresponding associativity pentagon
commutes. For each n and choice of r, pi for all 1≤i≤r, mij for all i and 1≤j≤pi,
and nijk for all i, j and 1≤k≤mij , such that n•••=n, we get a diagram of the form:

• •

• •

•

//
///

��/
//

yyyy

||yyyy

���

�����

EEEE

""EEEE

•

•

•
��

��

��
•

•

•
��

��

��

••

•

•

44
�� //

**
?? • • •oooooo

•

•

•

OO

OO

OO

id //

9999999999

id

��9999999999

vvvvvvvvvvvvvvvvv

id

{{vvvvvvvvvvvvvvvvv

����������

id

������������

HHHHHHHHHHHHHHHHH

id

##HHHHHHHHHHHHHHHHH

					

id

��					

IIIIIIIIII

id

$$IIIIIIIIII

//
8888888

id

��8888888

wwwwwwww

{{wwwwwwww

◦

α

α

t

α

t

α

t

◦

α

n

where the inner-most pentagon what we are trying to prove the commutativity of.
The outer pentagon has all vertices equal to E

i
F
j

G
k

H
l
. The composites of the dotted

paths of length 3, when taken over all choices, form coproduct cocones of each of
the vertices of the inner pentagon. For instance for the top left vertex we have

E
i

F
j

G
k

H
l

(E◦F
ij

) G
k

H
l

cGH // ((E◦F)◦G
ijk

) H
l

cH // (((E◦F )◦G)◦H)n
c //

and the two indicated paths involving the left most vertex are

E
i

F
j

G
k

H
l

(E◦F
ij

) G
k

H
l

cGH // (E◦F
ij

)(G◦H
kl

)E◦Fc // (((E◦F )◦G)◦H)n
c //

and

E
i

F
j

G
k

H
l

E
i

F
j
(G◦H
kl

)EFc // (E◦F
ij

)(G◦H
kl

)cG◦H // (((E◦F )◦G)◦H)n
c //

and in a similar vein the reader will easily supply the details of the other dotted
paths. The labels of the regions of the diagram indicate why the corresponding
region commutes: “α” means the region commutes by the definition of α, “n”
indicates commutativity because of naturality, “◦” indicates commutativity because
of the definition of the arrow map of ◦, and “t” indicates that the region commutes
trivially. The outer pentagon of course also commutes trivially. Since all this is true
for all choices of the r, pi, mij and nijk, we obtain the commutativity of the inner
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pentagon since the top left dotted composites together exhibit (((E◦F )◦G)◦H)n as
a coproduct. The statement about Mon(Dist(V)) follows immediately by unpacking
the definitions involved. �

4. Monads from multitensors

Multitensors generalise non-symmetric operads by example(2.6). Given certain
hypotheses on the ambient braided monoidal category V, a non-symmetric operad
therein gives rise to a monad on V whose algebras are those of the original operad.
Thus one is led to ask whether one can define a monad from a multitensor in
a similar way. Such a construction is described in the present section, and we
continue to assume throughout this section that V has coproducts.

Define the functor Γ : Dist(V)→ End(V) as

Γ(E)(X) =
∐
n≥0

E
1≤i≤n

X

and so for each X in V we get

cn : E
1≤i≤n

X → Γ(E)(X)

for n ∈ N forming a coproduct cocone. By the definition of I the map c1 :
X→Γ(I)(X) is an isomorphism, and we define that the inverses of these maps
are the components of an isomorphism γ0 : 1V→Γ(I). For X in V and m and ni in
N where 1≤i≤m, we can consider composites

E
i

F
j
X E

i
ΓFX

E
i

c
j // Γ(E)Γ(F )X

cm //

and since E is distributive all such composites exhibit Γ(E)Γ(F )X as a coproduct.
For X, m and ni as above one also has composites

E
i

F
j
X (E◦F

ij
)X

c
ij // Γ(E◦F )X

cn• //

and all such composites exhibit Γ(E◦F )X as a coproduct. Thus there is a unique
isomorphism γ2 making

E
i

F
j
X (E◦F

ij
)X

Γ(E◦F )X

E
i

Γ(F )X Γ(E)Γ(F )X

E
i

c
j

OO

cm //
γ2

**TTTTTTT

c
ij

//
cn•

44jjjjjjjj

commute, and γ2 is clearly natural in X.

Proposition 4.1. The data (γ0, γ2) make Γ into a monoidal functor, and so
it sends distributive multitensors to monads. For any distributive multitensor E,
one has an isomorphism Mon(E) ∼= ΓE-Alg commuting with the forgetful functors
into V.
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Proof. The definition of γ2 in the case where E=I and the m=1 says that
the outside of

F
j
X (I◦F

j
)X

Γ(I◦F )X

Γ(F )X Γ(I)Γ(F )X

c
j

OO
γ0ΓF //

γ2

**TTTTTTTT

λ−1
//

cn

44jjjjjjjjj

Γλ−1
11

=

commutes for all m ∈ N, and the region labelled with “=” commutes because of
the definition of the arrow maps of ◦. Thus the inner triangle, which is the left unit
monoidal functor coherence axiom, commutes also. The definition of γ2 in the case
where F=I and the ni’s are all 1 says that the outside of

E
i

I
j
X (E◦I

ij
)X

Γ(E◦I)X

E
i

Γ(I)X Γ(E)Γ(I)X

E
i
γ0

OO

cm //

γ2

**TTTTTTTTTTTTT

ρ−1
//

cn•

44jjjjjjjjjjjjjj

Γ(E)X
cm

66mmmmmmmm

Γρ−1

aaaaaa 00aaaaaaaaaaaaaaaaa

Γ(E)γ0

??��������

=

=

commutes for all m ∈ N, and the regions labelled with “=” commute because of the
definition of the arrow maps of ◦. Thus the inner triangle, which is the right unit
monoidal functor coherence axiom, commutes also. So it remains to verify that for
E, F and G in Dist(V), that

(2)

Γ(E)Γ(F )Γ(G) Γ(E◦F )Γ(G)

Γ(E)Γ(F◦G) Γ((E◦F )◦G)

Γ(E◦(F◦G))

γ2Γ(G) //

γ2

��::::::::

Γα
wwnnnnnnnnnnnnn

Γ(E)γ2

����������

γ2
''PPPPPPPPPPPPP
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commutes. Now given X in V and r, mi and nij in N where 1≤i≤r and 1≤j≤mi,
one obtains a diagram of the form

• •

• •

•

//
///

��/
//

yyyy

||yyyy

���

�����

EEEE

""EEEE

•

•

•
��

��

��
••• // // //

•

•

•

•

ww

��

��

��oo

••• // // // • • •oooooo

•

•

•

OO

OO

OO

id //

id9999999999

��9999999999

id
vvvvvvvvvvvvvvvvv

{{vvvvvvvvvvvvvvvvv

id �������

���������

id ���

�����

id

HHHHHHHHHHHHHHHHH

##HHHHHHHHHHHHHHHHH

id
//

id

;;;;;

��;;;;;

id
����

������

idHHHHHHHHHHHH

##HHHHHHHHHHHH
wwwwwwww

{{wwwwwwww

���

�����

t

γ2

n

t
γ2

α

Γ

t

n

γ2 ΓE

t

γ2

where the inner-most pentagon is (2) instantiated at X, and all the outer vertices
are E

i
F
j

G
k
X. The two 3-fold paths into Γ(E)Γ(F )Γ(G)(X) are the top-leftmost

path

E
i

F
j

G
k
X E

i
F
j

Γ(G)X
E
i

F
j

c
k // Γ(E) F

j
Γ(G)X

c
i // Γ(E)Γ(F )Γ(G)(X)

Γ(E) cj //

and

E
i

F
j

G
k
X E

i
F
j

Γ(G)X
E
i

F
j

c
k // E

i
Γ(F )Γ(G)(X)

E
i

c
j // Γ(E)Γ(F )Γ(G)(X)

c
i //

and these are equal because of naturality. The composites so formed by taking all
choices of r, mi and nij exhibit Γ(E)Γ(F )Γ(G)(X) as a coproduct because E and
F are distributive. The left-most dotted path into Γ(E◦F )Γ(G)(X) is

E
i

F
j

G
k
X E

i
F
j

Γ(G)X
E
i

F
j

c
k // (E◦F

ij
)Γ(G)X

c
ij // Γ(E◦F )Γ(G)(X)

c
ij // ,

the other path into Γ(E◦F )Γ(G)(X) is

E
i

F
j

G
k
X E◦F

ij
G
k
X

c
ij // (E◦F

ij
)Γ(G)X

E◦F
ij

c
k // Γ(E◦F )Γ(G)(X)

c
ij // ,

and similarly the reader will easily supply the definitions of the other dotted paths
in the above diagram. The labelled regions of that diagram commute for the reasons
indicated by the labels as with the proof of proposition(3.3), the region labelled by
“Γ” commutes by the definition of the arrow map of Γ, and the region labelled
by “ΓE” commutes by the definition of the arrow map of ΓE. The outer diagram
commutes trivially and since this is all true for all choices of the r, mi and nij ,
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the inner pentagon commutes as required. The statement about Mon(E) follows
immediately by unpacking the definitions involved. �

Example 4.2. One can apply proposition(4.1) to the case of example(2.6) when
(V,⊗, I) is a distributive braided monoidal category, because then the multitensor
on V determined by a non-symmetric operad will also be distributive. In this
way one obtains the usual construction of the monad induced by a non-symmetric
operad.

Example 4.3. Applying proposition(4.1) to the case of a distributive monoidal
category (V,⊗, I) as in example(3.2), one recovers the usual monoid monadM :=Γ(⊗).
In the case where ⊗ is cartesian product and T preserves coproducts, in view
of Γ(T×)=MT one obtains a monad structure on MT , and thus a monad dis-
tributive law λ : TM→MT , and the algebras of MT are monoids in T -Alg by
proposition(2.8). In terms of Γ and T× one can describe λ explicitly. The substi-
tution for T×, described in example(2.3), is a map µ× : T×◦T×→T× in Dist(V),
and λ is the composite

TM
ηTMη // MTMT

Γµ× // MT

in End(V).

5. Multitensors as operads

Given a cartesian monad T on a finitely complete category V one has the well-
known notion of T -operad as described for example in [12]. There is an analogous
notion of T -multitensor and we shall describe this in the present section. Under
certain conditions the given monad T distributes with the monoid monad M on
V and the composite monad MT is again cartesian, in which case one has an
equivalence of categories between T -multitensors and MT -operads. The theory
described in this section requires that T is a little more than cartesian, namely that
it is a local right adjoint monad, and that V is lextensive. Both notions will be
recalled here for the readers’ convenience.

We recall some aspects of the theory of local right adjoints from [15]. In
loc.sit such functors were called “parametric right adjoints” (p.r.a’s), but local
right adjoint is a better name – the prefix “local” is commonly used to denote
notions that apply only on the slices of the categories involved as is the case here.
A functor T : A→B is a local right adjoint (l.r.a) when for all A ∈ A, the induced
functors

TA : A/A→ B/TA
given by applying T to arrows are right adjoints, and when A has a terminal object
1, this is equivalent to asking that T1 is a right adjoint. Right adjoints are clearly
l.r.a and l.r.a functors are closed under composition. Moreover one has the following
simple observation which we shall use often in this work.

Lemma 5.1. Let I be a set and Fi : Ai→Bi for i ∈ I be a family of l.r.a
functors. Then ∏

i

Ai
Q
i
Fi

//
∏
i

Bi

is l.r.a.
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Proof. Given Xi ∈ Ai for i ∈ I, we have (
∏
i

Fi)(Xi)=
∏
i

((Fi)Xi), which as a

product of right adjoints is a right adjoint. �

There is a more explicit characterisation of l.r.a functors which is sometimes useful.
A map f : B→TA is T -generic when for any α, β, and γ making the outside of

B
α //

f

��

TX

Tγ

��
TA

Tβ
//

Tδ

<<

TZ

commute, there is a unique δ for which γ ◦ δ = β and T (δ) ◦ f = α. The alternative
characterisation says that T is l.r.a iff every map f : B→TA factors as

B
g // TC

Th // TA

where g is generic, and such generic factorisations are unique up to isomorphism if
they exist (see [15] for more details). One defines a monad (T, η, µ) on a category
V to be l.r.a when T is l.r.a as a functor, and η and µ are cartesian transformations.
One has the following corresponding definition for multitensors.

Definition 5.2. A multitensor (E, u, σ) on V is l.r.a when E :MV→V is l.r.a
and u and σ are cartesian transformations.

It is straight-forward to observe that E is l.r.a iff En : Vn→V is l.r.a for each n ∈ N.

Example 5.3. Let (T, η, µ) be a l.r.a monad on V a category with finite prod-
ucts. First note that T×n is the composite

Vn Tn // Vn
Q
// V

and so is l.r.a. by lemma(5.1) and the composability of l.r.a’s. From [15] lemma(2.14)
the canonical maps

kXi : T
∏
i

Xi →
∏
i

TXi

which measure the extent to which T preserves products are cartesian natural in
the Xi. Thus T× is a l.r.a multitensor.

For a l.r.a monad (T, η, µ) on a category V recall that a T -operad is cartesian monad
morphism α : A→T . That is, A is a monad on V, α is a natural transformation
A→T which is compatible with the monad structures, and the naturality squares
of α are pullbacks. The cartesianness of α and l.r.a’ness of T implies that A is itself
a l.r.a monad. For instance when T=T the monad on the category Ĝ of globular
sets whose algebras are strict ω-categories, to be recalled in detail in section(6),
T -operads are the ω-operads [1]. By analogy one has the following definition for
multitensors.

Definition 5.4. Let (T, η, µ) be a l.r.a monad on V a category with finite
products. A T -multitensor is a cartesian multitensor morphism ε : E→T×.
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Example 5.5. We will now unpack this notion in the case where V = Set and
T is the identity monad. Because of the pullback squares

E
i
Xi

∏
i

TXi

(T1)nEn1

εXi //

Q
i
TtXi

��

E
i
tXi

��
ε1
//

the data for ε amounts to a sequence of objects En := En1 ∈ V for n ∈ N, together
with maps εn,i : En→T1 for 1≤i≤n. In this case T1=1 so ε amounts to a sequence
(En : n ∈ N) of sets. In terms of this data one has

(3) E
1≤i≤n

Xi = En ×
∏
i

Xi

The unit of the multitensor amounts to an element u : 1→E1, and the substitution
σ amounts to functions

σn1,...,nk : Ek × En1 × ...× Enk → En•

for each finite sequence (n1, ..., nk) of natural numbers. The multitensor axioms for
(E, u, σ) correspond to axioms that make (E, u, σ) a non-symmetric operad in Set.

We assume throughout this section that V is lextensive. Let us now recall this
notion. A category V is lextensive3 [5] when it has finite limits, coproducts and for
each family of objects (Xi : i ∈ I) of V the functor∏

i∈I
V/Xi → V/

(∐
i∈I

Xi

)
which sends a family of maps (hi : Zi→Xi) to their coproduct is an equivalence.
This last property is equivalent to saying that V has a strict initial object and that
coproducts in V are disjoint and stable. There are many examples of lextensive
categories: for instance every Grothendieck topos is lextensive, as is CAT. Moreover
if T is a coproduct preserving monad on a lextensive category V then T -Alg is also
lextensive: for such a T the forgetful functor T -Alg→V creates finite limits and
coproducts, and so these exist in T -Alg and interact as nicely as they did in V.
Thus in particular the category of algebras of any higher operad is lextensive. Note
in particular that lextensivity implies distributivity (see [5]) and so the results
of the previous two sections apply in this one. The next result summarises how
lextensivity interacts well with l.r.a’ness.

Lemma 5.6. Let A and B be lextensive and I be a set.
(1) The functor

∐
: AI→A, which takes an I-indexed family of objects of A

to its coproduct, is l.r.a.
(2) If Fi : A→B for i ∈ I are l.r.a functors, then

∐
i

Fi : A→B is l.r.a.

(3) If Fi : A→B for i ∈ I are functors and φi : Fi→Gi are cartesian trans-
formations, then

∐
i

φi :
∐
i

Fi→
∐
i

Gi is cartesian.

3Usually lextensivity is defined using only finite coproducts whereas we work with small ones.
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Proof. (1): given a family (Xi : i∈I) of objects of A, the functor (
∐

)(Xi) is
just the functor ∏

i∈I
A/Xi → A/

(∐
i∈I

Xi

)
which is an equivalence, and thus a right adjoint.
(2):

∐
i

Fi is the composite

A ∆ // AI
Q
i
Fi

// BI
‘
// B

of a right adjoint (since A has coproducts) followed by a l.r.a (by lemma(5.1)
followed by another l.r.a (by (1), and so is l.r.a.
(3): the naturality square for

∐
i

φi corresponding to f : X→Y in A is the coproduct

of the cartesian naturality squares

FiX
φi,X //

Fif

��

GiX

Gif

��
FiY

φi,Y

// GiY

and so by (1) is itself a pullback. �

Denote by LraDist(V) and LraEnd(V) the subcategories of Dist(V) and End(V)
respectively, whose objects are l.r.a’s and arrows are cartesian transformations.

Proposition 5.7. Let V be lextensive. The monoidal structure of Dist(V)
restricts to LraDist(V), and Γ restricts to a strong monoidal functor

LraDist(V)→LraEnd(V)

(which we shall also denote by Γ).

Proof. Any functor 1→A out of the terminal category is l.r.a, and thus one
readily verifies that the functors Vn→V constant at the initial object 0 of V are
l.r.a also. Since 1V is l.r.a the unit of Dist(V) is l.r.a. For l.r.a E and F ∈ Dist(V)
we must verify that E◦F is l.r.a. By the formula

(E ◦ F )n =
∐

n1+...+nk=n

Ek(Fn1 , ..., Fnk)

and lemma(5.6) it suffices to show that each summand is l.r.a. But Ek(Fn1 , ..., Fnk)
is the composite ∏

i

Vni
Q
i
Fni
// Vk

Ek // V

which is l.r.a by lemma(5.1). Given ε : E→E′ and φ : F→F ′ in LraDist(V) we
must show that ε◦φ is cartesian. By lemma(5.6) it suffices to show that

Ek(Fn1 , ..., Fnk)
εk(φn1 ,...,φnk )

// E′k(F ′n1
, ..., F ′nk)
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is cartesian. But this natural transformation is the composite

∏
i

Vni Vk V

Q
i
Fni

##

Q
i
F ′ni

;;

Ek

""

E′k

<<
Q
i
φni

��
εk��

and so as a horizontal composite of cartesian transformations between pullback
preserving functors, is indeed cartesian. Thus the monoidal structure of Dist(V)
restricts to LraDist(V), and to finish the proof we must verify that Γ preserves l.r.a
objects and cartesian transformations. Let E ∈ Dist(V) be l.r.a. By lemma(5.6),
to establish that Γ(E) is l.r.a it suffices to show that for all n ∈ N, the functor
X 7→ En(X, ...,X) is l.r.a, but this is just the composite

V ∆ // Vn
En // V

which is l.r.a since En is. Let φ : E→F in Dist(V) be cartesian and let us see that
Γ(φ) is cartesian. By lemma(5.6) this comes down to the cartesian naturality in X
of the maps

φn,X,...,X : En(X, ...,X)→ Fn(X, ...,X)

which is an instance of the cartesianness of φn. �

Example 5.8. From examples(5.3) and example(3.2) T× is a l.r.a distributive
multitensor when T is a coproduct preserving l.r.a monad on a lextensive category
V. By proposition(5.7), the monad MT described in example(4.3) is l.r.a and the
distributive law λ : TM→MT is cartesian.

Modulo one last digression we are now ready to exhibit the equivalence between
T -multitensors andMT -operads as promised at the beginning of this section. Recall
that ifW is a monoidal category and (M, i,m) a monoid therein, that the sliceW/M
gets a canonical monoidal structure. The unit is the unit i : I→M of the monoid,
the tensor product of arrows α : A→M and β : B→M is the composite

A⊗B
α⊗β // M⊗M m // M

and the coherences are inherited from W so that the forgetful functor W/M→W
is strict monoidal. To give α : A→M a monoid structure in W/M is the same as
giving A a monoid structure for which α becomes a monoid homomorphism, and
this is just the object part of an isomorphism Mon(W/M)∼=Mon(W)/M commuting
with the forgetful functors intoW. Moreover given a monoidal functor F :W→W ′,
FM is canonically a monoid and one has a commutative square

W/M
FM //

��

W ′/FM

��
W

F
// W ′

of monoidal functors.
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Applying these observations to Γ : LraDist(V)→LraEnd(V) one obtains for
each l.r.a distributive multitensor E, a monoidal functor

ΓE : LraDist(V)/E → LraEnd(V)/ΓE.

An object of LraDist(V)/E amounts to a functor A : MV→V together with a
cartesian transformation α : A→E. Given such data the distributivity of A is
a consequence of the cartesianness of α, the distributivity of E and the stability
of V’s coproducts. The l.r.a’ness of A is also a consequence, because the domain
of any cartesian transformation into a l.r.a functor is again l.r.a. A morphism in
LraDist(V)/E from α to β : B→E is just a natural transformation φ : A→B such
that βφ=α, because by the elementary properties of pullbacks φ is automatically
cartesian. Thus a monoid in LraDist(V)/E is simply a cartesian multitensor mor-
phism into E. Similarly a monoid in LraEnd(V)/ΓE is just a cartesian monad
morphism into ΓE, and so by observing its effect on monoids in the case E=T×

where T is a coproduct preserving l.r.a monad on V, one has a functor

ΓT : T -Mult→MT -Op

from the category of T -multitensors to the category of MT -operads.

Theorem 5.9. Let V be lextensive and T a coproduct preserving l.r.a monad
on V. Then the functor ΓT just described is an equivalence of categories T -Mult '
MT -Op.

Proof. By the way we have set things up it suffices to show that for any l.r.a
distributive multitensor E on V, the functor ΓE : LraDist(V)/E→LraEnd(V)/ΓE
is essentially surjective on objects and fully faithful. Let α : A→Γ(E) be a cartesian
transformation. Choosing pullbacks

A
i
Xi

E
i
Xi En(1, ..., 1) ΓE(1)

A1

αXi
��

E
i
tXi

//
cn
//

//

cn

��

for each finite sequence (Xi : 1≤i≤n) of objects of V, one obtains a cartesian
transformation α : A→E. The stability of V’s coproducts applied to the pullbacks

An(1, ..., 1)

��

α // En(1, ..., 1)

cn

��
A1 α1

// ΓE(1)

for each X ∈ V and n ∈ N ensures that ΓE(α)∼=α thus verifying essential sur-
jectivity. Let α : A→E and β : B→E be cartesian, and φ : ΓA→ΓB such that
Γ(β)φ=Γα. To finish the proof we must show there is a unique φ′ : A→B such that
βφ′=α and Γφ′=φ. The equation Γφ′=φ implies in particular that

∐
n
φ′n,1=φ1, and
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this determines the components φ′n,1,...,1 uniquely because of

An(1, ..., 1) Bn(1, ..., 1) En(1, ..., 1)

ΓE(1)ΓB(1)ΓA(1)

φ′n,1,...,1

//
βn,1,...,1

//

αn,1,...,1

**

φ1 //
‘
βn //

‘
αn

44

cn

��
cn

��
cn

��

and these components determine φ′ uniquely because of

A
i
Xi B

i
Xi E

i
Xi

A
i

1B
i

1E
i

1

φ′Xi

//
βXi

//

αXi

**

φ′n,1,...,1 // βn,1,...,1 //

αn,1,...,1

55

A
i
tXi

��
B
i
tXi

��
E
i
tXi

��

and the equation βφ′=α. To see that Γφ′=φ, that is
∐
n
φ′n,X,...,X=φX for all X ∈ V,

one deduces that the inner square in

An(X, ...,X) Bn(X, ...,X)

ΓB(X)ΓA(X)

ΓA(1)

An(1, ..., 1) Bn(1, ..., 1)

ΓB(1)

φ′n,X,...,X//

cn
��

cn
��

φX

//

φ′n,1,...,1 //

cn

��

cn

��

φ1

//

An(tX ,...,tX)RRRR

iiRRRR
Bn(tX ,...,tX)llll

55llll

ΓA(tX)
llll

uulllll ΓB(tX)
RRRR

))RRRRR

is a pullback since the outer square and all other regions in this diagram are pull-
backs, and so the result follows by lextensivity. �

6. The strict ω-category monad

The setting of the previous section involved a coproduct preserving l.r.a monad
T , and after this section we shall be concerned with the case where T = T the strict
ω-category monad on Ĝ the category of globular sets, and its finite dimensional
analogues the strict n-category monads. We give a precise and purely inductive
combinatorial description of T in section(6.2), using some further theory of l.r.a
monads on presheaf categories which we develop in section(6.1), to facilitate our
description of the details.
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6.1. Specifying l.r.a monads on presheaf categories. From [15] we know
that to specify a l.r.a T : B̂→Ĉ one can begin with P ∈ Ĉ and a functor ET :
el(P )→B̂. Here we will usually not distinguish notationally between p ∈ PC and
ET (p, C). Given k : D→C in C we shall denote by pk the element Pk(p) and by
k : pk→p the map

ET (k : (pk,D)→(p, C)).

Given this data one can then define an element of TX(C) to be a pair (p, h) where
p ∈ PC and h : p→X in B̂. For a map k : D→C one defines TX(k)(p, h) = (pk, hk),
and one identifies P=T1. If the ET (p, C) are all connected, then T preserves
coproducts.

With T so specified it is not hard to characterise generic morphisms. To give a
map f : A→TX is to give for a ∈ AC an element pa ∈ PC together with a map fa :
pa→X in B̂, and this data should be natural in C. The assignment (C, a) 7→ pa is
the object map of a functor f : el(A)→B̂ and the fa are the components of a cocone
with vertex X. Factoring this cocone through its colimit Z gives a factorisation

A
g // TZ

Th // TX

where the ga are the components of the universal cocone. One can easily verify
directly that such a g is generic, and since generic factorisations are unique up to
isomorphism, one obtains

Lemma 6.1. For T : B̂→Ĉ specified as above, f : A→TX is generic iff its
associated cocone exhibits X as a colimit.

Examples 6.2. (1) If in particular A is a representable C, then f :
A→TX amounts to a pair (p, h : p→X). The associated cocone consists
of the one map p and so f is generic in this case iff p is an isomorphism.

(2) In the case T = 1bC, f : A→X is generic iff it is an isomorphism.
(3) Given T : Ĉ→Ĉ specified as above, a morphism f : C→T 2X amounts

to a pair (p, h : p→TX). This morphism is T 2-generic iff h is T -generic
because to give a commuting diagram as depicted on the left

C
α //

f

��

T 2Y

T 2γ

��
T 2X

T 2β

// T 2Z

p α′ //

h

��

TY

Tγ

��
TX

T 2β

// TZ

is the same as giving a commuting diagram as depicted on the right in the
previous display, and so the assertion follows by definition of “generic”.

Suppose now that such a T : Ĉ→Ĉ comes with a cartesian transformation
η : 1→T . The component η1 picks out elements uC ∈ PC and for all X ∈ Ĉ the
naturality of η with respect to the map X→1 shows that the components of η have
the explicit form

x ∈ XC 7→ (uC , x′ : uC→X).
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Observing
uCC

η //

x′

��

TuC(C)

Tx′

��
XC η

// TX(C)

ι � //_

��

(uC , 1uC )
_

��
x � // (uC , x′)

we have a unique element of ι ∈ uCC which is sent by η to 1uC . It is a general
fact [14] that components of cartesian transformations reflect generic morphisms,
and so by examples(6.2)(1) and (2) the morphism C→uC corresponding to ι is an
isomorphism. One may assume that this isomorphism is an identity by redefining
the yoneda embedding if necessary to agree with C 7→ uC and similarly on arrows,
so we shall write C = uC . Then the components of η may be written as

x 7→ (C, x : C→X)

where the x on the right hand side corresponds to the x on the left hand side by
the yoneda lemma.

Definition 6.3. Let T be a l.r.a endofunctor of Ĉ and η : 1→T be a cartesian
transformation. A pair (P,ET ) giving the explicit description of (T, η) as above is
called a specification of (T, η). That is to say, a specification consists of P ∈ Ĉ,
ET : el(P )→Ĉ and an inclusion C↪→el(P ) whose composite with ET is the yoneda
embedding.

By the discussion preceeding definition(6.3) every such (T, η) has a specification.
Let us denote the assignments of an arbitary natural transformation µ : T 2→T by

(p ∈ PC, f : p→TX) 7→ (qf ∈ PC, hf : qf→X).

Naturality of µ in C says that for k : D→C, qfk = qfk and hfk = hfk. Naturality
of µ in X says that for h : X→Y , qT (h)f = qf and hT (h)f = hhf . Suppose that µ
is cartesian. Observing

T 2qf
µ //

T 2hf

��

Tqf

Thf

��
T 2X µ

// TX

gf � //
_

��

(qf , 1qf )
_

��
(p, f : p→TX) � // (qf , hf )

one finds that ∀p ∈ PC and f : p→TX, ∃!gf : p→Tqf such that f=T (hf )gf and
hgf = id. By example(6.2)(3) and the fact that cartesian transformations reflect
generics, such gf ’s are automatically generic. Conversely given such gf ’s one can
readily verify that the naturality squares of µ corresponding to maps X→1 are
pullbacks and so verify that µ is cartesian. We record these observations in

Lemma 6.4. Let (T, η) be specified as in definition(6.3). To give a cartesian
natural transformation µ : T 2→T is to give for each p ∈ PC and f : p→TX, an
element qf ∈ PC and a factorisation

p
gf // Tqf

Thf // TX

satisfying
(1) For k : D→C, qfk = qfk and hfk = hfk.
(2) For h : X→Y , qT (h)f = qf and hT (h)f = hhf .
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(3) For all p ∈ PC and f : p→TX, gf is unique such that f=T (hf )gf and
hgf = id.

and given this data, the gf are automatically generic morphisms.

Thus a cartesian transformation µ : T 2→T amounts to a nice choice of certain
generic factorisations for T . Given such a characterisation it is straight-forward to
unpack what the monad axioms for (T, η, µ) say in terms of these factorisations.

Lemma 6.5. Let (T, η) be specified as in definition(6.3). To give µ : T 2→T
making (T, η, µ) a l.r.a monad is to give factorisations as in lemma(6.4) which
satisfy the following further conditions:

(1) For all p ∈ PC and f : p→X, qηf = p and hηf = f .
(2) For all p ∈ PC and f : p→X, q(p,f) = p and h(p,f) = f where (p, f)

denotes the map C→TX corresponding to the element (p, f) ∈ TX(C) by
the yoneda lemma.

(3) For all p ∈ PC and f : p→TX, qhf = qµf and hhf = hµf .

To summarise, given a specification of a l.r.a T : Ĉ→Ĉ, one has for each C ∈ C and
f : C→TX, p ∈ PC and a generic factorisation

C
g // Tp

Th // TX

of f . The data of a l.r.a monad (T, η, µ) enables us to regard C ∈ PC and gives us
for each p ∈ PC and f : p→TX, a choice of qf ∈ PC and generic factorisation

p
gf // Tqf

Thf // TX

of f , and these choices satisfy certain axioms.
In the case of the strict ω-category monad below some further simplifications

are possible enabling one to dispense with need to verify the additional conditions
of lemma(6.5) when describing it. The reason as we shall see, is that this case
conforms to the following definition.

Definition 6.6. A l.r.a T : B̂→Ĉ specified by ET : el(P )→B̂ is tight when for
all p and q ∈ PC and ι : p ∼= q in B̂, one has p = q in PC and ι = id.

Clearly tightness is a property of T , that is, is independent of the specification.

Examples 6.7. (1) Let T be the free monoid endofunctor of Set. Then
ET is a functor N→Set sending n ∈ N to a set with n elements. There
are of course many non-trivial automorphisms of a finite set, and so T is
not tight.

(2) Let T be the free category endofunctor on Graph which we regard as
presheaves on 0

//
//1. Then P0 = {0} and P1 = {[n] : n ∈ N} and

the graph [n] has object set {i : 0≤i≤n} and a unique edge (i− 1)→i for
each 1≤i≤n. With these details at hand one readily verifies that this T
is tight.

(3) The free symmetric multicategory endofunctor on the category of multi-
graphs as described in example(2.14) of [14] is not tight. In this case one
actually has distinct p and q in PC sent by ET to isomorphic multigraphs.

Lemma 6.8. If T : B̂→Ĉ is a tight l.r.a then for all A : B̂→Ĉ there exists at
most one cartesian transformation A→T .
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Proof. Let α and β : A→T be cartesian transformations and a ∈ AX(C).
For a given specification P one has pα and a generic factorisation

C
a //

gα !!CCCCCCCC AX
αX // TX

Tpα

Thα

<<yyyyyyyy

and using the cartesian naturality square for α corresponding to hα, one has
g′α : C→Apα unique such that αg′α = gα and a = A(hα)g′α. Since cartesian trans-
formations reflect generics, this last equation is an A-generic factorisation of a, and
similarly one obtains another one: a = A(hβ)g′β by using β instead of α. Thus
there is a unique isomorphism δ : pα→pβ so that A(δ)g′α = g′β and hαδ = hβ . By
tightness δ is an identity and so αXa = βXa. �

Thus given a tight l.r.a T : Ĉ→Ĉ, cartesian transformations η : 1→T and µ : T 2→T
are unique if they exist, and when they do the monad axioms for (T, η, µ) are
automatic. This gives the following refinement of lemma(6.5) in the tight case.

Corollary 6.9. Let (T, η) be specified as in definition(6.3) and let T be tight.
To give µ : T 2→T making (T, η, µ) a l.r.a monad is to give factorisations as in
lemma(6.4).

Moreover for a tight l.r.a monad T on Ĉ, the multitensor T× admits the same
simplifications.

Lemma 6.10. Let (T, η, µ) be a l.r.a monad on Ĉ such that T is tight. Then
for all E :MĈ→Ĉ, there exists at most one cartesian transformation ε : E→T×.

Proof. To give such an ε is to give for each n ∈ N a cartesian transformation
εn : En→T×n , and so it suffices by lemma(6.8), to show that T×n : Ĉn→Ĉ is tight
for all n ∈ N. The functor ET×n has object map ((p1, ..., pn), C) 7→ (p1, ..., pn). For
q1, ..., qn ∈ T1(C), to give an isomorphism ι : (p1, ..., pn) ∼= (q1, ..., qn) in Ĉn, is to
give isomorphisms ιi : pi ∼= qi for 1≤i≤n, in which case the ιi are identities by the
tightness of T , and so T×n is also tight. �

Thus for a tight monad T on Ĉ, being a T -operad is actually a property of a
monad on Ĉ, and similarly for T -multitensors. We shall exploit this observation
notationally below, for instance, by denoting a T -operad α : A→T as we just have
as a monad morphism, or just by referring to the monad A, depending on what is
most convenient for the given situation.

6.2. Inductive description of the strict ω-category monad. A goal of
this paper to clarify the inductive nature of the operadic approach to higher cate-
gory theory of [1]. The starting point of that approach is a precise description of
the monad (T , η, µ) on the category Ĝ of globular sets whose algebras are strict
ω-categories. Thus in this section we recall this monad, but describe it a little
differently to the way it has been described in the past. We shall give here a purely
inductive description of this fundamental object, and we shall use the results of the
previous section to expedite our account of the details. That the algebras for the
monad described in this section really are strict ω-categories defined in the usual
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way by successive enrichments, is presented in section(8) as a pleasant application
of our general theory.

The category G has as objects natural numbers and for n < m maps

n
σ //

τ
// m

and these satisfy στ=ττ and τσ=σσ. Thus an object of the category Ĝ of globular
sets is a diagram

X0 X1
t

oo
soo

X2
t

oo
soo

X3
t

oo
soo ...

t
oo
soo

of sets and functions such that ss = st and ts = tt. The elements of Xn are called
n-cells, and for an (n + 1)-cell x, the n-cells sx and tx are called the source and
target of x respectively. In fact for each k≤n, we can define source and target
k-cells of x and we denote these by skx and tkx, only dropping the indexing when
there is little risk of confusion. Given a pair (a, b) of n-cells of X, one can define
the globular set X(a, b). A k-cell of X(a, b) is an (n + k)-cell x of X such that
skx = a and tkx = b. Sources and targets for X(a, b) are inherited from X. In
particular the globular sets X(a, b) where a and b are 0-cells are called the homs of
X. A morphism f : X→Z of globular sets induces maps X(a, b)→Z(f0a, f0b) on
the homs. Conversely, to give f it suffices to specify a function f0 : X0→Z0 and
for all a, b ∈ X0, morphisms X(a, b)→Z(f0a, f0b) of globular sets.

A finite sequence (X1, ..., Xn) of globular sets may be regarded as a globular
set, whose set of 0-cells is {i ∈ N : 0 ≤ i ≤ n} and whose only non-empty homs are
given by (X1, ..., Xn)(i−1, i) = Xi for 1≤i≤n. This construction is the object map
of a functor Ĝn→Ĝ.

We now begin our description of the endofunctor T in the spirit of section(6.1).
The role of P is played by the globular set Tr of trees. The set Tr0 contains one
element denoted as 0 and its associated globular set contains one 0-cell, also called
0, and nothing else. By induction an element of Trn+1 is a finite sequence (p1, ..., pk)
of elements of Trn and its associated globular set is just the sequence of globular
sets (p1, ..., pk) regarded as a globular set as in the previous paragraph. So far we
have defined the elements of Trn for all n and the object map of ET : el(Tr)→Ĝ.
We denote by σ : 0→p the map which selects the object 0 ∈ p, and by τ : 0→p the
map which selects the maximum vertex of p (using ≤ inherited from N).

The source and target maps s, t : Trn+1→Trn coincide and are denoted as ∂.
For each n we must define this map and give maps σ : ∂p→p and τ : ∂p→p which
satisfy the equations σσ = τσ and ττ = στ in

(4) ∂2p
σ //

τ
// ∂p

σ //

τ
// p

for all p ∈ Trn+2, in order to complete the description of Tr and the functor ET ,
and thus the definition of T . The maps ∂, σ and τ are given by induction as
follows. For the initial step ∂ is uniquely determined since Tr0 is singleton and
σ and τ are as described in the previous paragraph. For the inductive step let
p = (p1, ..., pk) ∈ Trn+2. Then ∂p = (∂p1, ..., ∂pk) and the maps σ, τ : ∂p→p are
the identities on 0-cells, and the non-empty hom maps are given by σ, τ : ∂pi→pi
respectively for 1≤i≤k. The verification of σσ = τσ and ττ = στ as in (4) is given
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by induction as follows. The initial step when n = 0 is clear since ∂2p = 0, and
the 0-cell maps of σ, τ : ∂p→p are both the identity. For the inductive step let
p ∈ Trn+3, then all the maps in (4) are identities on 0-cells, and on the homs the
desired equations follow by induction.

By section(6.1) we have completed the description of a l.r.a T : Ĝ→Ĝ and we
will now see that it is tight. Once again we argue by induction on n. In the case
n = 0 the result follows because Tr0 = {0} and the only automorphism of 0 ∈ Ĝ
is the identity. For the inductive step let p, q ∈ Trn+1 and suppose that one has
ι : p ∼= q in Ĝ. Since the only non-empty homs for p and q are between consecutive
elements of their vertex sets, any f : p→q in Ĝ is order preserving in dimension
0. Thus the 0-cell map of ι is an order preserving bijection, and so must be the
identity. The hom maps of ι must also be identities by induction. Since the globular
sets associated to p ∈ Trn are also connected we have the following result.

Proposition 6.11. T : Ĝ→Ĝ defined as follows is l.r.a, tight and coproduct
preserving:

• an n-cell of T X is a pair (p, f : p→X) where p ∈ Trn.
• for n≥1, s(p, f) = (∂p, fσ) and t(p, f) = (∂p, fτ).
• for h : X→Y , T (h)(p, f) = (p, hf).

We will now specify the cartesian unit η : 1→T , and from section(6.1) we know
that this amounts to factoring the yoneda embedding through ET . We already
have 0 ∈ Tr0, and by induction we define n + 1 = (n) ∈ Ĝ. Notice that the set
of k-cells of n is {0, 1} when k < n and {0} when k = n. Moreover by an easy
inductive proof the reader may verify that the k-cell maps of σ : n→n + 1 and
τ : n→n + 1 are the identities for k < n, and pick out 0 and 1 respectively when
k = n. One has functions ev0 : Ĝ(n,X)→Xn given by f 7→ fn(0) clearly natural in
X ∈ Ĝ. By another easy induction one may verify that these functions are bijective,
and natural in n in the sense that sfn+1(0) = (fσ)n(0) and tfn+1(0) = (fτ)n(0).
Henceforth we regard the identification of n as a globular set in this way as the
yoneda embedding, and the components of η are given by x ∈ Xn 7→ x : n→X.

Before specifying the multiplication µ : T 2→T some preliminary remarks are in
order. For 0-cells a and b of X, an n-cell of the hom T X(a, b) consists by definition,
of p = (p1, ..., pk) ∈ Trn+1 together with f : p→X such that fσ = a and fτ = b.
In other words one has a sequence (x0, ..., xk) of 0-cells of X such that x0 = a and
xk = b, together with maps fi : pi→X(xi−1, xi) for 1≤i≤k. Another way to say all
this is that for a given sequence (x0, ..., xk) of 0-cells of X such that x0 = a and
xk = b, one has an inclusion

cxi :
∏

1≤i≤k
T (X(xi−1, xi))→ T X(a, b)

in Ĝ, and the following result.

Lemma 6.12. The maps cxi , for all sequences (x0, ..., xk) of 0-cells of X such
that x0 = a and xk = b, form a coproduct cocone.

Let p = (p1, ..., pk) ∈ Trn+1. A map f : p→T X amounts to 0-cells fi of X for
0≤i≤k, together with hom maps fi : pi→T X(f(i− 1), fi) for 1≤i≤k. Since the pi
are connected, the fi amount to 0-cells (xi0, ..., ximi) of X such that xi0 = f(i− 1)
and ximi = fi, together with maps fij : pi→T (X(x(ij)−1, xij)) for 1≤i≤k and
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1≤j≤mi where

(i, j)− 1 =

 (i, j − 1) when j > 0.
(i− 1,mi−1) when j = 0 and i > 0.
0 when i = j = 0.

In other words for p = (p1, ..., pk) ∈ Trn+1, to give f : p→T X is to give objects
x0 and xij of X together with maps fij : pi→T (X(x(ij)−1, xij)) for 1≤i≤k and
1≤j≤mi. We shall call x0 and the xij the 0-cells of f , and the fij the hom map
components of f . Observe that for h : X→Y , the 0-cells of T (h)f are given by hx0

and hxij , and the hom map components by hfij where 1≤i≤k and 1≤j≤mi.
Now we specify the multiplication µ : T 2→T following lemma(6.4). For p ∈ Trn

and f : p→T X the factorisation of f that we must provide will be given by induction
on n. When n = 0, p = 0 and a map f : 0→TX picks out a 0-cell (0, x : 0→X) of
T X. Define qf = 0, hf = x and gf : 0→T 0 to pick out (0, 10). For the inductive
step let p = (p1, ..., pk) ∈ Trn+1 and f : p→T X. Then define

qf = (qfij : 1≤i≤k, 1≤j≤mi)

where the fij are the hom map components of f as defined in the previous para-
graph. Define hf to have 0-cell mapping given by 0 7→x0 and (i, j)7→xij , and hom
maps by hfij . Define gf to have underlying 0-cells given by 0 and (i, j), and hom
map components by gfij . By definition we have f = T (hf )gf .

Proposition 6.13. (T , η, µ) with T as specified in proposition(6.11), and η
and µ given by

x ∈ Xn 7→ (n, x : n→X) (p ∈ Trn, f : p→T X) 7→ (qf , hf )

is a l.r.a monad.

Proof. By corollary(6.9) it suffices to verify conditions (1)-(3) of lemma(6.4).
Condition(1) says that for p = (p1, ..., pk) ∈ Trn+1 and f : p→T X: qfσ = qfτ =
∂qf , hfσ = hfσ and hfτ = hfτ . Let us write x0 and xij for the 0-cells of f and fij
for the hom map components where 1≤i≤k and 1≤j≤mi. In the case n = 0, we
must have 0 = qfσ = qfτ = ∂qf since 0 is the only element of Tr0. Clearly fσ picks
out x0 and fτ picks out xkmk , and so hfσ : 0→X picks out x0 and hfτ : 0→X
picks out xkmk by the initial step of the description of the factorisations. By the
definition of the object map of hf , hfσ and hfτ also pick out the 0-cells x0 and
xkmk respectively, thus verifying the n = 0 case of condition(1). For the inductive
step let p = (p1, ..., pk) ∈ Trn+2 and f : p→T X. First note that σ, τ : ∂p→p
are identities on 0-cells and so f , fσ and fτ have the same 0-cells which we are
denoting by x0 and xij . Moreover by the definition of hom map components, one
has (fσ)ij = fijσ and (fτ)ij = fijτ . Thus by induction

qfσ = (qfijσ : 1≤i≤k, 1≤j≤mi) = (∂qfij : 1≤i≤k, 1≤j≤mi) = ∂qf

and similarly qfτ = ∂qf . Since σ, τ : ∂qf→qf are identities on 0-cells the equations
hfσ = hfσ and hfτ = hfτ are true on 0-cells, and on homs these equations follow
by induction.

Condition(2) says that for p ∈ Trn, f : p→T X and h : X→Y , qT (h)f = qf and
hT (h)f = hhf . When n = 0 these equations are immediate. For the inductive step
let p = (p1, ..., pk) ∈ Trn+1, f : p→T X and h : X→Y . The objects of qT (h)f and qf
coincide by definition, and the homs do by induction. The object maps of hT (h)f

and hhf coincide by definition and their homs maps coincide by induction.
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Condition(3) says that for p ∈ Trn and f : p→T X, gf is unique such that
f = T (hf )gf and hgf = id. For n = 0 this is clear by inspection. For the inductive
step let p = (p1, ..., pk) ∈ Trn+1 and f : p→T X. By inspection the 0-cell map of hgf
is the identity, and by induction its hom maps are also identities. As for uniqueness,
the object map of gf is determined uniquely by k and mi ∈ N for 1≤i≤k, and the
uniqueness of the hom maps follows by induction. �

7. Normalised T -operads and T -multitensors

In this section we relate T -operads to T -multitensors and so express T -operad
algebras as enriched categories. Under a mild condition on an operad α : A→T , that
it be normalised in the sense to be defined shortly, one can construct a multitensor A
on Ĝ such that A-categories are A-algebras. Moreover A is in fact a T -multitensor,
and the construction ( ) is part of an equivalence of categories between T -Mult and
the full subcategory of T -Op consisting of the normalised T -operads.

Definition 7.1. An endofunctor A of Ĝ is normalised when for all X ∈ Ĝ,
{AX}0∼=X0. A monad (A, η, µ) is normalised when A is normalised as an endo-
functor, a cartesian transformation α : A→T is called a normalised collection when
A is normalised, and a T -operad α : A→T is normalised when A is normalised
as a monad or endofunctor. We shall denote by T -Coll0 the full subcategory of
LraEnd(Ĝ)/T consisting of the normalised collections, and by T -Op0 the full sub-
category of T -Op consisting of the normalised operads.

A 0-cell of T X is a pair (p ∈ Tr0, x : p→X), but then p = 0 and by the yoneda
lemma we can regard x as an element of X0. Thus T is normalised. The category
T -Coll0 inherits a strict monoidal structure from LraEnd(Ĝ)/T , and the category
of monoids therein is exactly T -Op0. We shall allow a very convenient abuse of
notation and language: for normalised A write {AX}0=X0 rather than acknowl-
edging the bijection, and speak of X and AX as having the same 0-cells. This
abuse is justified because for any normalised A, one can obviously redefine A to A′

which is normalised in this strict sense, and the assignment A 7→ A′ is part of an
equivalence of categories between normalised endofunctors and “strictly normalised
endofunctors”, regarded as full subcategories of End(Ĝ).

We begin by recalling and setting up some notation. Recall how a finite se-
quence (X1, ..., Xk) of globular sets may be regarded as a globular set: the set of
0-cells is

[k]0 = {0, ..., k},
(X1, ..., Xk)(i − 1, i) = Xi and all the other homs are empty. Since we shall use
these sequences often thoughout this section it is necessary to be careful with the
use of round brackets with globular sets. For instance X and (X) are different, and
so for an endofunctor A of Ĝ, one cannot identify AX and A(X)!! Observe also
that the 0-cell map of a morphism

f : (X1, ..., Xm)→ (Y1, ..., Yn)

must be distance preserving, that is it sends consecutive elements to consecutive
elements, whenever all the Xi are non-empty globular sets. We regard sequences
(x0, ..., xk) of 0-cells of a globular set X as maps x : [k]0→X in Ĝ. Given any such
x we shall define

x∗X := (X(xi−1, xi) : 1≤i≤k),
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and a map x : x∗X→X of globular sets. The maps x and x agree on 0-cells, and
xi−1,i = id for 1≤i≤k specifies the hom maps of x.

Fundamental to this section is the description of the homs of T X given in
lemma(6.12). We shall now refine this and see that an analogous lemma holds for
any normalised collection. For X a globular set and a and b ∈ X0, we shall now
understand the hom {T X}(a, b). An n-cell of {T X}(a, b) is a pair (p, f) where
p ∈ Trn+1 and f : p→X, such that fσ = a and fτ = b. First we consider the case
X = (X1, ..., Xk) for globular sets Xi. Writing p = (p1, ..., pm) where the pi ∈ Trn,
notice that f0 must be distance preserving. There will be no such f when a > b,
and in the case a ≤ b an n-cell of {T X}(a, b) consists of pi ∈ Trn where a<i≤b
together with fi : pi→Xi. In particular note that when a = 0 and b = k, f0 = id.
We record this in the following result.

Lemma 7.2. Let X = (X1, ..., Xk) in Ĝ. Then for 0≤a, b≤k we have

{T X}(a, b) =

{
∅ a > b∏
a<i≤b

T Xi a ≤ b

In particular T ×Xi = {T X}(0, k).

Now take X to be an arbitrary globular set. Writing x : [m]0→X for the sequence
of 0-cells of X defined by f0, notice that f : p→X factors uniquely as

p
f ′ // x∗X

x // X

and so defines (p, f ′) ∈ T x∗Xn which gets sent to (p, f) by T x. Notice that f ′ is the
identity on 0-cells, which is to say that (p, f ′) is an n-cell of {T x∗X}(0,m). There-
fore an n-cell φ of {T X}(a, b) is determined uniquely by the following data: m ∈ N,
x : [m]0→X such that x0 = a and xm = b, and an n-cell φ′ of {T x∗X}(0,m). One
recovers φ from this data by {T x}0,mφ′ = φ. Notice also that if any of the homs
X(x(i − 1), xi) is empty, then since T preserves the initial object, one has that
{T x∗X}(0,m) is empty by lemma(7.2). Thus one can also specify an n-cell φ of
{T X}(a, b) uniquely by giving (m,φ′, x) as above, with the additional condition on
x that the homs X(x(i − 1), xi) be non-empty for all 1≤i≤k. This last condition
amounts to saying that one can factor x as

[m]0
i // [m] // X

where i is the inclusion of the vertices of [m]. We shall call the sequences x satisfying
this condition connected. We have proved the following refinement of lemma(6.12).

Lemma 7.3. Let X be a globular set and a and b ∈ X0.
(1) The maps

{T x}0,m : {T x∗X}(0,m)→ {T X}(a, b)

for all m ∈ N and all sequences x : [m]0→X such that x0 = a and xm = b,
form a coproduct cocone.

(2) The maps {T x}0,m for all m ∈ N and all connected sequences x : [m]0→X
such that x0 = a and xm = b, form a coproduct cocone.

Now for a normalised collection α : A→T , the extensivity of Ĝ and the cartesianness
of α enables us to lift our understanding of the homs of T X expressed in the
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previous two lemmas, to an understanding of the homs of AX. In order to do this
in lemma(7.5) below, we require a basic lemma regarding pullbacks and homs in Ĝ.

Lemma 7.4. Given a commutative square (I)

W

f

��

h // X

g

��
Y

k
// Z

I

W (a, b)

fa,b

��

ha,b // X(ha, hb)

gha,hb

��
Y (a, b)

ka,b

// Z(ha, hb)

II

in Ĝ such that f0 and g0 are identities, one has for each a, b ∈ W0 commuting
squares (II) as in the previous display. The square (I) is a pullback iff for all
a, b ∈W0, the square (II) is a pullback.

Proof. Suppose that (I) is a pullback and a, b ∈ W0. Let y ∈ Y (a, b)n and
x ∈ X(ha, hb)n such that ky = gx. Then there is a unique w ∈ Wn+1 such that
fw = y and hw = x, and since f0 = id and its components commute with sources
and targets, one has w ∈ W (a, b)n whence (II) is a pullback. Conversely suppose
that (II) is a pullback for all a, b ∈ W0. In dimension 0 (I) is a pullback since f0

and g0 are identities. For n ∈ N let y ∈ Yn+1 and x ∈ Xn+1 such that ky = gx.
Put a = s0y and b = t0b so that y ∈ Y (a, b)n. Since the components of maps in
Ĝ commute with sources and targets we have x ∈ X(ha, hb)n, and since (II) is
a pullback there is a unique w ∈ W (a, b)n such that fw = y and hw = x. Any
w′ ∈ Wn+1 such that fw′ = y and hw′ = x is in W (a, b)n since the components of
f commute with sources and targets, and so w′ = w. �

Lemma 7.5. Fix a choice of initial object ∅ and pullbacks in Ĝ, such that the
pullback of an identity arrow is an identity. Let α : A→T be a normalised collection.

(1) Let X = (X1, ..., Xk) in Ĝ. Then for 0≤a, b≤k we have

{AX}(a, b) =
{
∅ a > b
{Ax∗X}(0, b− a) a ≤ b

where x : [b− a]0→X is given by xi = a+ i.
(2) The maps

{Ax}0,m : {Ax∗X}(0,m)→ {AX}(a, b)

for all m ∈ N and all sequences x : [m]0→X such that x0 = a and xm = b,
form a coproduct cocone.

(3) The maps {Ax}0,m for all m ∈ N and all connected sequences x : [m]0→X
such that x0 = a and xm = b, form a coproduct cocone.

Proof. In the caseX = (X1, ..., Xk) with a > b one has {αX}a,b : {AX}(a, b)→∅
by lemma(7.2), and since the initial object of Ĝ is strict, one has {AX}(a, b) = ∅.
Given any X and x : [m]0→X such that x0 = a and xm = b, we have that

{Ax∗X}(0,m)
{Ax}0,m//

{αx∗X}0,m
��

{AX}(a, b)

{αX}a,b
��

{T x∗X}(0,m)
{T x}0,m

// {T X}(a, b)
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is a pullback by lemma(7.4) and the cartesianness of α. In the case X = (X1, ..., Xk)
with a ≤ b and x : [b − a]0→X given by xi = a + i, {T x}0,b−a is the identity by
lemma(7.2), thus so is {Ax}0,b−a and we have proved (1). In the general case
considering all m ∈ N and sequences (resp. connected sequences) x : [m]0→X with
x0 = a and xm = b, the {T x}0,m form a coproduct cocone by lemma(7.3), and
thus so do the {Ax}0,m by extensivity, which gives (2) and (3). �

For a normalised collection A, k ∈ N and Xi ∈ Ĝ where 1 ≤ i ≤ k, define

A
i
Xi = {AX}(0, k)

where X = (X1, ..., Xk).

Remark 7.6. There is an analogy between lemma(7.5) and the Lagrangian
formulation of quantum mechanics. In this analogy one regards any globular set
X, to which one would apply a collection, as a state space the 0-cells of which
are called states. A normalised collection A is then a type of quantum mechanical
process, with the hom {AX}(a, b) playing the role of the amplitude that the process
starts in state a and finishes in state b. The basic amplitudes are the {AX}(0, k)
where X = (X1, ..., Xk). In terms of these analogies, lemma(7.5) expresses the
sense in which the general amplitude {AX}(a, b) may be regarded as the sum of
the basic amplitudes over all the “paths” between a and b, that is, as a sort of
discrete Feynman integral. The formula just given expresses this passage between
basic and general amplitudes as a particular strong monoidal functor, which allows
us to view normalised operads as multitensors, and algebras of such an operad as
categories enriched in the corresponding multitensor.

The reader should be aware that it first became apparent to the authors that
lemma(7.5) is fundamental to the proof of theorems(7.7) and (7.8), and the above
analogy was noticed afterwards.

Theorem 7.7. The assignment A 7→ A is the object map of a strong monoidal
functor

( ) : T -Coll0 → Dist(Ĝ).
For a normalised operad A, one has an isomorphism A-Alg ∼= A-Cat commuting
with the forgetful functors into Set.

Proof. The above definition is clearly functorial in the Xi so one has A :
MĜ→Ĝ. A morphism of normalised collections φ : A→B is a cartesian trans-
formation between A and B, and such a φ then induces a natural transformation
φ : A→B by the formula φXi = {φX}0,k. The cartesianness of φ and lemma(7.4)
ensures that φ is cartesian. In particular T = T × by lemma(7.2) and so for a
given normalised collection α : A→T , one obtains a cartesian α : A→T ×. Now
by example(3.2) T × is distributive (ie preserves coproducts in each variable) and
so A is also because of the cartesianness of α and the stability of coproducts in Ĝ.
The assignment φ 7→ φ described above is clearly functorial, and so ( ) is indeed
well-defined as a functor into Dist(Ĝ).

Since X(0, k) is empty when k 6= 1 and just X1 when k = 1, we have 1 = I the
unit of Dist(Ĝ). Let A and B be normalised collections and X = (X1, ..., Xm). By
lemma(7.5) the morphisms

{Ax}0,k : {Ax∗BX}(0, k)→ {ABX}(0,m)
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where k ∈ N and x : [k]0→BX such that x0 = 0 and xk = m, form a coproduct
cocone. By the definition of the tensor product in Dist(Ĝ), this induces an isomor-
phism AB ∼= A ◦ B. We now argue that these isomorphisms satisfy the coherence
conditions of a strong monoidal functor. Recall that the tensor product in Dist(Ĝ)
is defined using coproducts. A different choices of coproducts give rise to different
monoidal structures on Dist(Ĝ), though for two such choices the identity functor
on Dist(Ĝ) inherits unique coherence isomorphisms that make it strong monoidal
and thus an isomorphism of monoidal categories. Because of this one may easily
check that if a given strong monoidal coherence diagram commutes for a partic-
ular choice of defining coproducts of the monoidal structure of Dist(Ĝ), then this
diagram commutes for any such choice. Thus to verify a given strong monoidal
coherence diagram, it suffices to see that it commutes for some choice of coprod-
ucts. But for any such diagram one can simply choose the coproducts so that all
the coherence isomorphisms involved in just that diagram are identities. Note that
this is not the same as specifying Dist(Ĝ)’s monoidal structure so as to make ( )
strict monoidal. This finishes the proof that ( ) is strong monoidal.

Let A be a normalised operad and Z be a set. To give a globular set X with
X0 = Z and x : AX→X which is the identity on 0-cells, is to give globular sets
X(y, z) for all y, z ∈ Z and maps xy,z : {AX}(y, z)→X(y, z). By lemma(7.5) the
xy,z amount to giving for each k ∈ N and f : [k]0→X such that f0 = y and fk = z,
a map

xf : A
i
X(fi−1, fi)→ X(y, z)

since A
i
X(fi−1, fi) = {Af∗X}(0, k), that is xf = xy,z{Af}0,k. For y, z ∈ Z, one

has a unique f : [1]0→X given by f0 = y and f1 = z. The naturality square for η
at f implies that {ηX}y,z = {Af}0,1{η(X(y,z))}0,1 and the definition of ( ) says that
{η(X(y,z))}0,1 = ηX(y,z). Thus to say that a map x : AX→X satisfies the unit law
of an A-algebra is to say that x is the identity on 0-cells and that the xf described
above satisfy the unit axioms of an A-category.

To say that x satisfies the associative law is to say that for all y, z ∈ Z,

(5) {A2X}(y, z)
{µX}y,z//

{Ax}y,z
��

{AX}(y, z)

xy,z

��
{AX}(y, z)

xy,z
// X(y, z)

commutes. Given f : [m]0→X with f0 = y and fm = z, and g : [k]0→Af∗X with
g0 = 0 and gk = m, precomposing (5) with the composite map

(6) {Ag∗Af∗X}(0, k)
{Ag}0,k// {A2f∗X}(0,m)

{Af}0,m// {A2X}(y, z)

and using lemma(7.5) one can see that one obtains the commutativity of

(7) A
i

A
j
X(f((i, j)− 1), f(i, j)) µ //

A
i
x{Af}g

��

A
ij
X(f((i, j)− 1), f(i, j))

xf

��
A
i
X(g(i− 1), gi)

xg
// X(y, z)
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where 1≤i≤k, 1≤j≤mi, with the mi determined in the obvious way by g. That is,
the associative law for x, namely (5), implies the A-category associative laws (7).
Conversely since the composites (6) over all choices of f and g form a coproduct
cocone by lemma(7.5), (7) also implies (5). This completes the description of the
object part of A-Alg ∼= A-Cat.

Let (X,x) and (X ′, x′) be A-algebras and F0 : X0→X ′0 be a function. To
give F : X→X ′ with 0-cell map F0 is to give for all y, z ∈ X0, maps Fy,z :
X(y, z)→X ′(F0y, F0z). By lemma(7.5) to say that F is an algebra map is equivalent
to saying that F0 and the Fy,z form an A-functor. The isomorphism A-Alg ∼= A-Cat
just described commutes with the forgetful functors into Set by definition. �

Early in the above proof we saw that ( ) sends morphisms in T -Coll0 to carte-
sian transformations. Since T × is tight by proposition(6.11) and lemma(6.10), this
implies by theorem(7.7) that ( ) may in fact be regarded as a strong monoidal
functor

( ) : T -Coll0 → LraDist(Ĝ)/T ×.
For this manifestation of ( ) we have the following result.

Theorem 7.8. The functor ( ) just described is an equivalence of categories
T -Coll0 ' LraDist(Ĝ)/T ×.

Proof. We will verify that ( ) is essentially surjective on objects and fully
faithful. For a cartesian ε : E→T × we now define α : A→T so that α ∼= ε. For
X ∈ Ĝ define {AX}0 = X0, and for x, y ∈ X0, define {AX}(x, y) as a coproduct
with coproduct injections

cf : E
i
X(f(i− 1), fi)→ {AX}(x, y)

for each f : [k]0→X with f0 = x and fk = y. This definition is functorial in X in
the obvious way. The components of α are identities on 0-cells with the hom maps
determined by the commutativity of

(8) E
i
X(f(i− 1), fi) cf //

ε

��

{AX}(x, y)

{αX}x,y
��

{T f∗X}(0, k)
{T f}0,k

// {T X}(x, y)

for all f as above. Since Ĝ is extensive these squares are pullbacks, and so by
lemma(7.4) α defined in this way is indeed cartesian. In the case where X =
(X1, ..., Xk) and f is the identity on 0-cells, one has {T f}0,k = id and so (8) gives
α ∼= ε as required. To verify fully faithfulness let α : A→T and β : B→T be
normalised collections, and φ : A→B be a cartesian transformation. To finish the
proof it suffices, by the tightness of T and T × and lemma(6.8), to define a cartesian
transformation ψ : A→B unique such that ψ = φ. For X ∈ Ĝ and f : [k]0→X this
last equation says that such a ψ must satisfy

{ψf∗X}(0, k) = φX(f(i−1),fi) : {Af∗X}(0, k)→ {Bf∗X}(0, k).

The cartesianness of ψ and the tightness of T implies ψβ = α by lemma(6.8), and
so {ψX}0 is the identity. For x, y ∈ X0 the map {ψX}x,y is determined by the
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commutativity of

{Af∗X}(0, k)
{Af}0,k//

{ψf∗X}(0,k)

��

{AX}(x, y)

{ψX}x,y
��

{Bf∗X}(0, k)
{Bf}0,k

// {BX}(x, y)

for all f , since the {Af}0,k form a coproduct cocone by lemma(7.5). Note also that
this square is a pullback by the extensivity of Ĝ. This completes the definition of
the components of ψ and the proof that they are determined uniquely by φ and
the equation ψ = φ, and so to finish the proof one must verify that the ψX are
cartesian natural in X. To this end let F : X→Y . Since the components of α are
identities in dimension 0 it suffices by lemma(7.4) to show that for all x, y ∈ X0

the squares

(9) {AX}(x, y)
{AF}x,y//

{ψX}x,y
��

{AY }(F0x, F0y)

{ψY }F0x,F0y

��
{BX}(x, y)

{BF}x,y
// {BY }(F0x, F0y)

are pullbacks. For all f : [k]0→X one has Ff = Ff by definition, and so the
composite square

{Af∗X}(0, k)
{Af}0,k//

{ψf∗X}(0,k)

��

{AX}(x, y)
{AF}x,y//

{ψX}x,y
��

{AY }(F0x, F0y)

{ψY }F0x,F0y

��
{Bf∗X}(0, k)

{Bf}0,k
// {BX}(x, y)

{BF}x,y
// {BY }(F0x, F0y)

is a pullback, and so by the extensivity of Ĝ (9) is indeed a pullback since the
{Af}0,k for all f form a coproduct cocone. �

Remark 7.9. The equivalence of theorem(7.8) could have been described dif-
ferently. This alternative view involves the adjoint endofunctors D and Σ of Ĝ. For
X ∈ Ĝ, DX is obtained by discarding the 0-cells and putting {DX}n = Xn+1, ΣX
has one 0-cell and ΣXn+1 = Xn and one has D a Σ. The effect of D and Σ on
arrows provides an adjunction

(10) Ĝ/T 1
DT 1 //

Ĝ/DT 1
ΣDT 1

oo ⊥ ,

and the right adjoint ΣDT 1 is fully faithful since Σ is. Thus (10) restricts to an
equivalence between the full subcategory N of Ĝ/T 1 consisting of those f : X→T 1
such that X0 is singleton. Evaluating at 1 gives an equivalence between T -Coll0
and the full subcategory of Ĝ/T 1 just described. By evaluating at 1 and by the
definitions of D and T 1 one obtains LraDist(Ĝ)/T × ' Ĝ/DT 1. Finally these
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equivalences fit together into a square

T -Coll0
( ) //

ev1

��

LraDist(Ĝ)/T ×

ev1

��
N

DT 1

// Ĝ/DT 1

which one may easily verify commutes up to isomorphism. These equivalences
ev1 really just express the equivalence of two different ways of viewing collections
and their multitensorial analogues, and so modulo this, the equivalence from (10)
expresses in perhaps more concrete terms what ( ) does. However we have chosen
to work with ( ) because this point of view makes clearer the relationship between
algebras and enriched categories that we have expressed in theorem(7.7).

Putting together theorem(7.8) and theorem(5.9) one obtains the equivalence
between normalised T -operads, T -multitensors and MT -operads.

Corollary 7.10. T -Op0 ' T -Mult 'MT -Op.

8. Finite dimensions and the algebras of T

We shall now explain how the results of this paper specialise to finite dimen-
sions, and show how one can see that the algebras of T really are strict ω-categories
defined in the usual way by successive enrichment.

The category G≤n is defined to be the full subcategory of G consisting of the
k ∈ N such that 0 ≤ k ≤ n. The objects of Ĝ≤n are called n-globular sets. By
definition the monad T on Ĝ restricts to n-globular sets: the description of T Xn

depends only on the k-cells of X for k ≤ n. Thus one has a monad T≤n on Ĝ≤n.
Our description of T from section(6) restricts also, and so the monads T≤n are l.r.a,
coproduct preserving and tight. In fact, by direct inspection, everything we have
done in this paper that has anything to do with T restricts to finite dimensions.

In particular for n ∈ N, denoting by T≤1+n-Coll0 the category of normalised
(1+n)-collections, whose objects are cartesian transformations α : A→T≤1+n whose
components are identities in dimension 0, one has a functor

( ) : T≤1+n-Coll0 → Dist(Ĝ≤n)

whose object map is given by the formula

A
i
Xi = {AX}(0, k)

where A is a normalised (1 + n)-collection, k ∈ N and Xi ∈ Ĝ≤n where 1 ≤ i ≤ k,
and X ∈ Ĝ≤1+n is defined as X = (X1, ..., Xk). The finite dimensional analogue of
theorem(7.7) is

Theorem 8.1. The functor ( ) just described is a strong monoidal functor,
and for a normalised (1 + n)-operad A, one has an isomorphism A-Alg ∼= A-Cat
commuting with the forgetful functors into Set.

As before one may also regard ( ) as a strong monoidal functor

( ) : T≤1+n-Coll0 → LraDist(Ĝ≤n)/T ×≤n.
and the analogue of theorem(7.8) is
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Theorem 8.2. The functor ( ) just described is an equivalence of categories
T≤1+n-Coll0 ' LraDist(Ĝ≤n)/T ×≤n.

and so we have

Corollary 8.3. T≤1+n-Op0 ' T≤n-Mult 'MT≤n-Op.

One can think of n as an ordinal instead of a natural number, and then the original
results from section(7) correspond to the case n = ω.

All along we have been working with the monads T≤n as formally defined
combinatorial objects. Given the results of this paper however, it is now easy
to see that their algebras are indeed strict n-categories. The usual definition of
strict n-categories is by successive enrichment. One defines 0-Cat = Set and (1 +
n)-Cat = (n-Cat)-Cat for n ∈ N where n-Cat is regarded as monoidal via cartesian
product. Recasting this a little more formally, (−)-Cat is an endofunctor of the
full subcategory of CAT consisting of categories with finite products. Writing 0
for the terminal object of this category, that is the terminal category, one has by
functoriality a sequence

00-Cat //1-Cat //2-Cat //3-Cat //... //

Explicitly the maps in this diagram are the obvious forgetful functors. The limit
of this diagram is formed as in CAT, and provides the definition of the category
ω-Cat. Then by theorem(7.7) and proposition(2.8) we have isomorphisms

φn : T≤1+n-Alg→ (T≤n-Alg)-Cat

Let us write Enr for the endofunctor V 7→ V-Cat that we have just been considering.
The isomorphisms φn are natural in the sense of the following lemma, which enables
us to then formally identify the algebras of T in theorem(8.5).

Lemma 8.4. For n ∈ N let trn : T≤1+n-Alg→T≤n-Alg be the forgetful functor
given by truncation. The square

T≤2+n-Alg
tr1+n //

φ1+n

��

T≤1+n-Alg

φn

��
(T≤1+n-Alg)-Cat

Enr(trn)
// (T≤n-Alg)-Cat

commutes for all n ∈ N.

Proof. One obtains φn explicitly as the composite of two isomorphisms

T≤1+n-Alg→ T ×≤n-Cat→ (T≤n-Alg)-Cat

the first of which is described explicitly in the proof of theorem(7.7), and the second
in the proof of proposition(2.8), and using these descriptions one may easily verify
directly the desired naturality. �

Theorem 8.5. For 0 ≤ n ≤ ω, T≤n-Alg ∼= n-Cat.

Proof. Write t : 0-Cat→0 for the unique functor. By the definition of ω-Cat
it suffices to provide isomorphisms ψn : T≤n-Alg→n-Cat for n ∈ N natural in the
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sense that
T≤1+n-Alg trn //

ψ1+n

��

T≤n-Alg

ψn

��
(1 + n)-Cat

Enr1+n(t)

// n-Cat

commutes for all n. Take ψ0 = 1Set and by induction define ψ1+n as the composite

T≤1+n-Alg
φn // (T≤n-Alg)-Cat

Enr(ψn)// (1 + n)-Cat .

The case n = 0 for ψ’s naturality comes from the fact that the isomorphisms that
comprise φ1 (see lemma(8.4)) are defined over Set. The inductive step follows easily
from lemma(8.4). �
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