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Abstract. An “algebraic left Kan extension” is a left Kan extension which interacts well with the
algebraic structure present in the given situation, and these appear in various subjects such as the
homotopy theory of operads and in the study of conformal field theories. In the most interesting
examples, the functor along which we left Kan extend goes between categories that enjoy universal
properties which express the meaning of the calculation we are trying to understand. These universal
properties say that the categories in question are universal examples of some categorical structure
possessing some kind of internal structure, and so fall within the theory of “internal algebra classifiers”
described in earlier work of the author. In this article conditions of a monad-theoretic nature are
identified which give rise to morphisms between such universal objects, which satisfy the key condition
of Guitart-exactness, which guarantees the algebraicness of left Kan extending along them. The
resulting setting explains the algebraicness of the left Kan extensions arising in operad theory, for
instance from the theory of “Feynman categories” of Kaufmann and Ward, generalisations thereof,
and also includes the situations considered by Batanin and Berger in their work on the homotopy
theory of algebras of polynomial monads.

1. Introduction

Categorical issues from the homotopy theory of operads and the study of conformal field theories,
can involve the interaction between certain types of possibly quite complicated colimit calculation on
the one hand, and algebraic structure on the other, with the difficulties contained in the compatibility
between these two aspects in given situations. Many such situations can be organised as the study
of taking left Kan extensions along a certain given functor f : A→ B, and studying what properties
and structure on f ensures that the process of left Kan extending along f is compatible with further
structure. For example if A and B are symmetric monoidal categories, one might want to know
when the left Kan extension of a symmetric strong monoidal functor along f ends up inheriting the
structure of a symmetric strong monoidal functor.

The general theory of “algebraic Kan extensions” is concerned with such questions. In the various
ways of making this subject precise, one begins with a structure within which one has some formal
notion of left Kan extension. Given an instance K of such a structure, and an appropriate type of
monad T on K, one can consider also left Kan extensions within the structure A formed by the
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algebras of T . Then the basic result is that given morphisms

A B

X

f //

g ��

algebras, there are natural conditions on f and X which ensure that left Kan extending g along f
down in K, becomes a left Kan extension in A. The condition on X is that such left Kan extensions
exist in K, and its monad algebra structure is compatible with them. For instance in the context
of symmetric monoidal categories mentioned above, the condition of being cocomplete and having
the tensor product commute with colimits in each variable, would be sufficient for all situations, but
often one can get away with a lot less.

As for the condition on f : A → B, this is formalised in terms of the notion, or the appropriate
analogue of it within K, of exact square introduced by René Guitart in [9]. Since f is some kind
of monad algebra morphism, there is a square which expresses it, which could either commute on
the nose, or be the boundary of some coherence cell which could be invertible or not, and it is this
algebra square which one requires to be exact.

Versions of the theory of algebraic Kan extensions have been given, the first of these being the
unpublished article [23] of Melliès and Tabareau, in which the formal setting is that of a proarrow
equipment in the sense of Wood [35, 36]. More recently this subject was part of the PhD thesis
[16] of Roald Koudenburg, and the resulting publication [17]. In both cases the formal settings
chosen involve quite a bit of metastructure, particularly from the point of view of the non-category
theorist. Thus in our exposition of this theory in Section 2, we choose the minimalistic setting of
a 2-category K with comma objects together with a general 2-monad on it, and take Ross Street’s
notion of pointwise left Kan extension from [26]. While this is at a cost of some generality, it leads us
most efficiently to the formulation of our main result in Section 3, while being completely adequate
for a wide range of interesting examples.

From this general theory, the main issue to understand when studying left Kan extensions along
an algebra morphism f : A→ B, is whether or not f ’s algebra square is exact. In particular examples
this can be as difficult as f and the given monad are complicated. Thus it is of interest to have general
results which guarantee f ’s exactness. As explained in the introduction to [4], there is a similar very
related issue with Getzler’s notion of “regular pattern”, in that the corresponding key condition that
ensures well-behaved left Kan extensions can be difficult to check in some examples. Kaufmann and
Ward’s context of a Feynman category [11] is one in which such issues have been understood. The
recent article [4] makes a direct connection between the settings of Getzler and Kaufmann-Ward,
with the notion of Guitart exactness.

These developments refer to the important case when the ambient structure required to be com-
patible with colimits is that of a symmetric monoidal category. However from the work of Batanin
and Berger [3], there are many interesting situations in which the ambient structure can be otherwise.
Moreover, in all the interesting examples of morphisms f : A→ B along which we wish to left Kan
extend, A and B enjoy fundamental universal properties, intricately linked to the meaning of the
calculation one is trying to understand. Indeed, the underlying philosophy of [3], which goes back to
the Batanin’s seminal paper [2], is that organising one’s calculations conceptually via these universal
properties is fundamentally useful.

In the language of [32] A and B are “internal algebra classifiers”, meaning that they are universal
examples of some kind of categorical structure possessing some kind of internal structure. Each of
these structures are expressed by 2-monads. The ability to speak of one type of structure being
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internal to the other, follows when one has an adjunction of 2-monads between them in the sense
defined in [32]. Unfortunately, since the setting of [3] involves polynomial monads defined over Set,
one cannot apply this universal perspective directly to the symmetric monoidal category monad.
This is because, as seen in [34], this monad comes from a polynomial defined over Cat, and so the
computation of the corresponding internal algebra classifiers is more involved. However in [32] the
computation of such internal algebra classifiers was understood.

In this article we provide a monad-theoretic setting which extends that of Batanin and Berger
so that it does include the symmetric monoidal category monad. In the main result, Theorem 3.3.2,
one has a general situation involving two related types of internal structure expressable within a type
of ambient structure. Following [32] this is formalised in terms of three 2-monads and adjunctions
of 2-monads between them, with the resulting setting giving rise to forgetful functors between the
categories of different types of internal structure. In the example of the modular envelope construction
discussed in Example 3.4.3, these are the forgetful functors, for each symmetric monoidal category
V , from the category of modular operads in V to the category of cyclic operads in V . The left adjoint
to these forgetful functors, when it exists, is the modular envelope construction. In this context V ’s
symmetric monoidal category structure is expressed as a pseudo algebra structure for the symmetric
monoidal category 2-monad.

Denoting by R and S the 2-monads which describe the two types of internal structure, and by
T the 2-monad which describes the ambient structure, one has the internal algebra classifiers TR

and T S for internal R and S algebras respectively. From [32] the meaning of these objects is that
R-algebras internal to a pseudo T -algebra A may be identified with pseudomorphisms TR → A,
and similarly for internal S-algebras. Moreover our setting gives rise to a strict T -algebra morphism
TR → T S, and the forgetful functors described above correspond to the process of precomposition
with it. Theorem 3.3.2 gives conditions on R, S and T ensuring that TR → T S is exact, so that the
left adjoints to the above forgetful functors are obtained by algebraic left extension along TR → T S.
In [7] the modular envelope construction was defined by directly specifying a symmetric monoidal
functor f : A→ B along which to left Kan extend. Applied to this example, Theorem 3.3.2 together
with the developments of [3, 32, 33], clarify why the categories A and B and the strict monoidal
functor f are what they are (their direct definition being somewhat combinatorially involved), why
A and B enjoy the expected universal properties, and why left Kan extending along f produces the
modular envelope construction.

Organisation of this article. Section 2 gives a self-contained account of the theory of alge-
braic Kan extensions sufficient for our purposes. Most of Section 3 is devoted to giving the precise
formulation of Theorem 3.3.2, which in addition to the aspects discussed above, also involves notions
from the theory of polynomial 2-functors defined over Cat [34]. Thus if one was just interested in a
precise formulation of the main result, then it would suffice to read just until the end of Section 3.3.

In Section 3.4 we discuss applications to operad theory, and extend what is known about algebraic
Kan extensions arising from coloured symmetric operads, to the non-symmetric and braided cases.
Moreover the results of this paper apply to establishing all the algebraic left extensions that are used
in [3] for the homotopy theory of operads. In a subsequent article the technology of this article will
be used to understand the construction of colimits in categories of internal algebras. In particular
this will bring Batanin and Berger’s insights on the calculation of semifree coproducts and semifree
pushouts into a setting which includes the symmetric monoidal category monad. Further applications
to homotopy theory are thus anticipated.

The correct notion of exact square in any 2-categorical context, is determined by what the notion
of pointwise left Kan extension is in that context. In Section 4 we describe the general theory of
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exact squares corresponding to Ross Street’s notion of pointwise left Kan extension in [26]. The main
result here is Proposition 4.3.4, which explains conditions under which pullbacks and bipullbacks are
exact. In fact this result is sufficient to deal with all the algebraic Kan extensions of [3]. Later
on in this article, we isolate this special case in Theorem 5.7.2, which does not require any of the
developments of [32] and Sections 5.1-5.5 of this article.

In the remainder of Section 4 we describe further results of general interest which do not bear
directly on the proof of the central result. In Section 4.4 we give a result which also appears in
[17], that all algebra morphisms are exact when T is colax idempotent. In Section 4.5 we obtain
explicit characterisations of exact monoidal, braided monoidal and symmetric monoidal functors,
and give some natural non-examples to contrast with the colax idempotent case. In Section 4.6 we
observe that for many of our examples, the unit and multiplication of the 2-monads we consider
have naturality squares which exact in both possible senses, and that this gives rise to the ability to
transfer algebraic cocompleteness across an adjunction of 2-monads.

Section 5 is concerned with the deeper interactions between the codescent calculations of internal
algebra classifiers understood in [32], and exact squares. The key technical result in this regard
is Theorem 5.1.4 whose proof occupies Sections 5.1-5.5. This result says that applying the functor
whose object map takes codescent objects of crossed double categories in the sense of [32] to a square,
which satisfies a double categorical mixture of the hypotheses of Proposition 4.3.4, produces an exact
square in Cat. Then in Sections 5.6 and 5.7 it is explained how to apply this result to our monad
theoretic context giving the proof of Theorem 3.3.2.

Acknowledgments. My interest in this subject began with the very inspiring work of Batanin
[2] in which internal algebras were used to shed light on configuration spaces. I am heavily indebted
to Michael Batanin for so generously sharing his insights. While working in Paris I was introduced
to exact squares and algebraic Kan extensions by Paul-André Melliès, long before beginning to think
seriously about this project. More recently, illuminating discussions with Ross Street helped me to
navigate through the world of lax coends, which appear in Section 5. There are variants of the main
result of this paper, and it was in discussions with Joachim Kock that it became clear to me that
for expository purposes, the variant based on polynomial monads which appears here is probably
the most illuminating. Finally, discussions with Roald Koudenburg helped me to optimise some
parts of Section 2. I am grateful also for the support of the Australian Research Council grant No.
DP130101172.

2. Algebraic Kan extensions

In this section we reformulate some of the theory of algebraic left Kan extensions so that it applies
for a 2-monad (K, T ). As mentioned above, the basic ideas and results of this section are not new.
Indeed in the double categorical setting of [17] one has versions of our Theorem 2.4.4, Corollary 2.4.5
and also of Proposition 4.4.1 in Section 4.

2.1. 2-monads. A 2-monad on a 2-category K is just the Cat-enriched version of a monad.
As such, a 2-monad consists of a 2-functor T : K → K, and 2-natural transformations η : 1K →
T (the “unit”) and µ : T 2 → T (the “multiplication”), satisfying the usual axioms. In our 2-
categorical context, there are weaker notions of monad involving the usual axioms holding up to
coherent isomorphism, but these will not concern us here. We will often denote a 2-monad as a pair
(K, T ) leaving the unit and multiplication implicit. We will always use the symbols η and µ for the
unit and multiplication of a 2-monad, and when there is more than one 2-monad present in a given
context, T ’s unit and multiplication will be denoted as ηT and µT .
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By contrast with ordinary category theory, 2-monads can have different types of algebras: lax,
colax, pseudo and strict; and different types of morphisms of algebras. Let (K, T ) be a 2-monad.
Recall that for A ∈ K, a pseudo T -algebra structure on A consists of an arrow a : TA→ A, invertible
coherence 2-cells a0 : 1A → aηA and a2 : aT (a)→ aµA, satisfying the following axioms:

a aηAa

a

a0a //

a2ηTA
��''

id

=
aT (a)T (a) aµAT

2(a)

aµAµTAaT (a)T (µA)

a2T 2(a)
//

a2µTA
��

//
a2T (µA)

��
aT (a2) =

aaT (a)T (ηA)

a

aT (a0)
oo

a2T (ηA)
�� ww

id

=

which we shall call the left unit axiom, the associativity axiom and the right unit axiom respectively.
We denote a pseudo T -algebra as a pair (A, a) leaving the data a0 and a2 implicit, and we will
sometimes speak of the pseudo algebra A when we wish a to be implicit also. When a0 and a2 are
identities, (A, a) is said to be a strict T -algebra.

A lax morphism (A, a) → (B, b) between pseudo T -algebras is a pair (f, f), where f : A → B
and f : bT (f)→ fa, satisfying the following axioms:

f

bT (f)ηA faηA

b0f

��

fηA

//
��

fa0

=

bT (b)T 2(f) bµBT
2(f)

faµA

faT (a)

bT (fa)

b2T 2(f)
//

fµA��

::

fa2$$fT (a)

��
bT (f)

=

which we shall call the unit and structure axioms respectively. A colax morphism is defined the
same way, except that the coherence cell is reversed f : fa → bT (f). When f is an isomorphism,
f is said to be a pseudomorphism, and when f is an identity, f is said to be a strict morphism of
algebras. Given lax T -algebra morphisms f and g : (A, a) → (B, b), a T -algebra 2-cell f → g is a
2-cell φ : f → g in K such that g(bT (φ)) = (φa)f , 2-cells of colax morphisms are defined similarly,
and these notions agree in the pseudo case.

Given the various notions of algebras and algebra morphisms, there are various 2-categories of
T -algebras. Those used in this article are described in the following table.

Name Objects Arrows

Ps-T -Algl pseudo T -algebras lax morphisms
Ps-T -Algc pseudo T -algebras colax morphisms
Ps-T -Alg pseudo T -algebras pseudomorphisms
Ps-T -Algs pseudo T -algebras strict morphisms
T -Algl strict T -algebras lax morphisms
T -Algc strict T -algebras colax morphisms
T -Alg strict T -algebras pseudomorphisms
T -Algs strict T -algebras strict morphisms

In each case, the 2-cells are just the T -algebra 2-cells between the appropriate T -algebra morphisms.
The basic examples of 2-monads to keep in mind in this article are

(1) M for monoidal categories,
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(2) S for symmetric monoidal categories,
(3) B for braided monoidal categories, and
(4) Pfin for categories with finite products

all on K = Cat, and are discussed at length in Section 5 of [34]. In particular they are all examples
of polynomial 2-monads. See also Section 2 of [32] for an exposition.

2.2. Algebraic left extensions. In a 2-category with comma objects one has the notion of a
pointwise left Kan extension [26]. Moreover, given a 2-monad T on a 2-category K with comma
objects, comma objects in Ps-T -Alg are computed as in K, and the projections are strict morphisms
[5, 21]. Thus in particular one can speak of pointwise left Kan extensions in Ps-T -Alg.

Definition 2.2.1. Let (K, T ) be a 2-monad and suppose that K has comma objects. Given
pseudomorphisms (g, g) and (f, f) between pseudo T -algebras as on the left

(I, i) (J, j)

(A, a)

(f,f)
//

(h,h)����(g,g)

ψ +3

I J

A

f //

h����g

ψ +3

we say that (g, g) admits algebraic left extension along (f, f) when

(1) The pointwise left Kan extension of g along f exists in K.
(2) For any such pointwise left Kan extension (h, ψ) in K as on the right in the previous display,

there exists a unique isomorphism h : aT (h) → hj making (h, h) a pseudomorphism, and
ψ an algebra 2-cell which exhibits (h, h) as the pointwise left Kan extension of (g, g) along
(f, f) in Ps-T -Alg.

In less formal terms, (g, g) admits algebraic left extension along (f, f), when the pointwise left
extension of (g, g) along (f, f) in Ps-T -Alg exists, and is computed as in K. The theory of algebraic
Kan extensions addresses the following

Question 2.2.2. What conditions on (f, f) and (A, a) ensure that every pseudo morphism (g, g)
admits algebraic left extension along f?

Example 2.2.3. Let I, J and A be categories with finite products, with I and J small and A
cocomplete cartesian closed. When T = Pfin, the 2-monad on Cat for the categories with finite
products, by having finite products, I, J and A are pseudo Pfin-algebras. A pseudo morphism in this
context is a finite product preserving functor. In the context of Definition 2.2.1, the cocompleteness
of A ensures that (1) holds, and the classical fact [22]: “the pointwise left Kan extension of a finite
product preserving functor g : I → A is finite product preserving”; ends up implying condition (2).

2.3. Algebraic cocompleteness. The reason that the classical fact recalled in Example 2.2.3 is
true, is that cartesian closedness ensures that A’s colimits are compatible with its pseudo Pfin-algebra
structure, in the sense that (−) × X : A → A is colimit preserving for all X ∈ A. In the general
situation, such compatibility of colimits with algebraic structure is given by

Definition 2.3.1. Let T be a 2-monad on a 2-category K with comma objects and f : I → J be
an arrow of K. Then a pseudo T -algebra (A, a) is algebraically cocomplete relative to f when

(1) For all g : I → A, the pointwise left extension of g along f exists in K.
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(2) If ψ exhibits h as a pointwise left Kan extension of g along f in K

I J

A

f //

h����g

ψ +3

TI TJ

TA

A

Tf //

Th����Tg

a
��

Tψ+3

then aT (ψ) exhibits aT (h) as a pointwise left Kan extension of aT (g) along T (f).

Propositions 2.3.2, 2.3.3 and 2.3.4 explain how, in the cases T = M, S, B and Pfin, Definition
2.3.1 captures the usual idea of the categorical structure encoded by the 2-monad being compatible
with colimits. In the proofs of these results we use the well-known fact that if ψ as on the left

I J

V

f //

h����g

ψ +3 I J

V

P K

f //

h����g

p
��

q //

k
��

ψ +3

pb

exhibits h as a pointwise left Kan extension of g along f , and f is an opfibration, then for any
k : K → J , the composite on the right exhibits hk as a left Kan extension of gp along q [26].
Moreover we use the fact that M, B, S and Pfin preserve opfibrations [30, 34].

Proposition 2.3.2. Let V be a monoidal category.

(1) V is algebraically cocomplete relative to all functors between small categories as a pseudo
M-algebra iff V is cocomplete and its tensor product preserves colimits in each variable.

(2) V is algebraically cocomplete relative to all functors between small discrete categories as a
pseudo M-algebra iff V has coproducts and its tensor product preserves coproducts in each
variable.

Proof. (1)(⇒): Suppose that small categories Ik for 1 ≤ k ≤ n, and colimit cocones as on the
left in

Ik 1

V

//

hk����gk

ψk +3
I n

V

f //

h����g

ψ +3

are given. Define I =
∐n

k=1 Ik, denote by n also the discrete category {1, ..., n}, define f : I → n
as the functor which sends Ik to k ∈ n, and then define g, h and ψ so that ψi = (ψk)i for i ∈ Ik.
Then ψ is easily verified to exhibit h as a pointwise left Kan extension of g along f . Since f is an
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opfibration, so is M(f), and so since V is algebraically cocomplete the composite

M(I)

M(n)

M(V) V
⊗

//M(f)

��
M(h)

44
**

M(g)

M(ψ) ��

n∏
k=1

Ik

1
��

(1,...,n)
//

//

pb

is a colimit cocone. In the case where, for a given 1 ≤ k ≤ n, Il = 1 and ψl = id for l 6= k, this says
that

⊗
: Vn → V preserves colimits in the k-th variable.

(2)(⇒): same as (1)(⇒) but with the Ik assumed discrete.
(1)(⇐): given the hypotheses on V and a functor f : I → J between small categories, we must

verify that for any sequence j = (j1, ..., jn) of objects of J , that the composite

M(f) ↓ j M(I)

M(V)

M(J)1

V

p //
M(g)

++
33

M(h)//
(j1,...,jn)

��
M(f)

��

⊗
//λ�� M(ψ) �� (1)

is a colimit cocone, for any natural transformation ψ which exhibits h as a pointwise left Kan extension
of g along f . Note that M(f) ↓ j ∼=

∏n
k=1 f ↓ jk and that

⊗
M(g)p is the composite functor

∏n
k=1 f ↓ jk In Vn V

∏
k pk // gn //

⊗
//

where pk is the comma projection pk : f ↓ jk → I. The component of (1) at (αk : fik → jk)1≤k≤n is
the composite ⊗n

k=1 gik
⊗n

k=1 hfik
⊗n

k=1 hjk

⊗
k ψik //

⊗
k αk //

which in each variable is a colimit cocone since ψ is a pointwise left Kan extension.
(2)(⇐): same argument as for (1)(⇐), except that now I and J are discrete, and so since M(f)

is then an opfibration, one may replace the comma object in (1) by pullback square. �

Proposition 2.3.3. Let V be a symmetric (resp. braided) monoidal category.

(1) V is algebraically cocomplete relative to all functors between small categories as a pseudo
S-algebra (resp. as a pseudo B-algebra) iff V is cocomplete and its tensor product preserves
colimits in each variable.

(2) V is algebraically cocomplete relative to all functors between small discrete categories as a
pseudo S-algebra (resp. as a pseudo B-algebra) iff V has coproducts and its tensor product
preserves coproducts in each variable.

Proof. One verifies (1)(⇒) and (2) by the same arguments as for Proposition 2.3.2. We give
here the proof of (1)(⇐) in the symmetric case. The braided case is similar. Given ψ as in the proof
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of Proposition 2.3.2(1)(⇐), we must verify that

S(f) ↓ j S(I)

S(V)

S(J)1

V

p //
S(g)

**
44

S(h)//
(j1,...,jn)

��
S(f)

��

⊗
//λ�� S(ψ) ��

is a colimit cocone. An object of S(f) ↓ j is a triple (i, ρ, α) as on the left

n n

JI

ρ //

j
��
//

f

��
i α +3

n n

I

ρ′′ //

i′����
i

β +3

n n n

JI

ρ′′ // ρ′ //

j
��

//
f

��
i i′��

β +3 α′ +3 =

n n

J

ρ //

j
����

fi

α +3

where ρ ∈ Σn. An arrow (i, ρ, α)→ (i′, ρ′, α′) is a pair (β, ρ′′) as in the middle, with ρ′ρ′′ = ρ in Σn,
and moreover satisfying the equation on the right in the previous display. The inclusion of objects
of the form (i, 1n, α) can be regarded as a functor

F :
n∏
k=1

f ↓ jk −→ S(f) ↓ j

and for (i, ρ, α) as above, the isomorphism (id, ρ−1) : (iρ−1, 1n, αρ
−1)→ (i, ρ, α) exhibits F as essen-

tially surjective on objects, thus an equivalence, and thus final, so that the result follows from the
proof of Proposition 2.3.2(1)(⇐). �

Proposition 2.3.4. Let V be a category with finite products.

(1) V is algebraically cocomplete relative to all functors between small categories as a pseudo
Pfin-algebra iff V is cocomplete and its cartesian product preserves colimits in each variable.

(2) V is algebraically cocomplete relative to all functors between small discrete categories as a
pseudo Pfin-algebra iff V has coproducts and its cartesian product preserves coproducts in
each variable.

Proof. Once again it is only necessary to modify the argument for (1)(⇐). Proceeding analo-
gously to the proof of Proposition 2.3.3 our task is to exhibit a final functor

F :
n∏
k=1

f ↓ jk −→ Pfin(f) ↓ j.

An object of Pfin(f) ↓ j is a triple (i, α, β) as on the left in

m n

JI

oo α

j
��
//

f

��
i

β +3

m m′

I

oo α
′′

i′����
i

γ +3

m m′ n

JI

oo α
′′

oo α
′

j
��

//
f

��
i i′��

γ +3 β′ +3 =

m n

J

oo α

j
����

fi

β +3

and an arrow (i, α, β)→ (i′, α′, β′) is a pair (α′′, γ) such that α′α′′ = α and the equation on the right
in the previous display holds. As in Proposition 2.3.3 we take F to be the full inclusion of objects of
the form (i, 1n, β), and the assignations (i, α, β) 7→ (iα, 1n, β) describe the effect on objects of a left
adjoint to F . Thus F , as a right adjoint, is a indeed final functor. �
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Algebraic cocompleteness in the sense of Definition 2.3.1 arises also for 2-monads on 2-categories
other than Cat. In particular one has

Example 2.3.5. A monoidal globular category in the sense of [1] is a pseudo algebra for the
2-monad denoted Ds in [1], and a monoidal globular category conforming to Definition 5.3 of [1] is
in particular, algebraically cocomplete relative to all morphisms of small discrete globular categories.

2.4. Existence of algebraic left extensions. We now give the sufficient conditions on (f, f)
and (A, a) as in Question 2.2.2, so that every pseudomorphism (g, g) : I → A admits algebraic left
extension along f . The conditions we shall require on (A, a) are that it be algebraically cocomplete
relative to f in the sense of Definition 2.3.1. We now turn to a discussion of the required conditions
on (f, f). These involve a generalisation of Guitart’s notion of “exact square” to the setting of a
2-category K with comma objects.

Definition 2.4.1. A lax square as on the left

P B

CA

q //

g
��
//

f

��
p

φ +3

P B

A C

V

f //

l����h

ψ +3

q //

g
��

p
��

φ +3

in a 2-category K with comma objects is exact when for all ψ which exhibit l as a pointwise left Kan
extension of h along f , the composite 2-cell on the right exhibits lg as a pointwise left Kan extension
of hp along q.

Example 2.4.2. The proof of Proposition 24 [26] requires only comma objects in the ambient
2-category, and thus comma squares are exact in general. We shall revisit this in Proposition 4.2.2.

Definition 2.4.3. Let (K, T ) be a 2-monad, suppose that K has comma objects and let (f, f) :
(A, a)→ (B, b) be a colax morphism of pseudo T -algebras. Then (f, f) is exact when the square

TA TB

BA

Tf //

b
��
//

f

��
a

f +3

is exact in the sense of Definition 2.4.1.

Theorem 2.4.4. Suppose that (K, T ) is a 2-monad, K has comma objects, (f, f) : (I, i)→ (J, j)
is a colax morphism of pseudo T -algebras, and (g, g) : (I, i) → (A, a) is a lax morphism of pseudo
T -algebras.

(1) If (A, a) is algebraically cocomplete relative to (f, f), then if ψ

I J

A

f //

h����g

ψ +3



ALGEBRAIC KAN EXTENSIONS ALONG MORPHISMS OF INTERNAL ALGEBRA CLASSIFIERS 11

exhibits h as a pointwise left extension of g along f in K, then the unique 2-cell h satisfying

TI TJ J

ATA

Tf // j //

h
��
//

a
--Tg

Th
��

Tψ+3 h +3 = TI

TJ

J

ATA

I

Tf
::

j

$$

hpp//
a

��
Tg

//i f //

g
��

g +3 ψ +3

f ?G

(2)

endows h with the structure of a lax morphism.
(2) If in the situation of (1) (f, f) is exact and (g, g) is a pseudomorphism, then (h, h) is a

pseudomorphism, and h is unique making ψ a 2-cell in Ps-T -Algc.
(3) If in the situation of (2) (f, f) is a pseudomorphism, then h is unique making ψ a 2-cell in

Ps-T -Alg which exhibits (h, h) as a pointwise left extension of (g, g) along (f, f) in Ps-T -Alg.

Proof. (1): The algebraic cocompleteness of (A, a) ensures that aT (ψ) is a left extension, and
so one has does have h uniquely determined by (2). Since ψ is a left extension, the unit axiom for h
is equivalent to the equation

I J

TJ

J

AA

TA
f //

ηJ
::

j

$$

h
��
//

1A
//g

h
��

��
Th

a
$$

::
ηA

ψ +3

= h +3

a0 ;C

= I J

TJ

J

AA

f //

ηJ
??

j

��

h
��
//

1A
//g

h
��

1J

//
ψ +3

j0 ;C

=

and this follows from the calculation

• •

•

•

••

•f //

η BB j

��

h��
//

1
..g

��

��

BB

��
ψ

= h

a0

= •

•

• •

••

•

•

f BB η

�� j //

h��
CC

1

''g

// //

'' �� ////

=

= Tψ
h

a0

= •

• •

•

••

• •

•

f BB
ηJ //

j

��

hww
CC

1A

��
g

//

BB

//

��

//

��
// //

=

= f

g ψ

a0

= •

• •

•

••

• •
f BB

ηJ //
j

��

hww
CC

1A

��
g

//

BB

// //

��

CC

= f

ψ

=

i0
= •

• •

•

•

f
OO
ηJ //

j��

huu��
g

//
��

ψ

=
j0

nat. η def.h unit g unit f

The algebraic cocompleteness of (A, a) ensures that aT (a)T 2(ψ) is a left extension, and so the mul-
tiplicative axiom for h is equivalent to

T 2I

TI TJ

J

ATAT 2A

T 2J TJ

µ
::

Tf //

j

$$

h
��
//

a
//

Ta

$$T 2g

//T 2f

µ
::

Tj //

T 2h
��

j //

Th
��

=

T 2ψ+3 Th+3 h +3

j2 ?G

= T 2I

TI TJ

J

ATAT 2A

T 2J TA

µ
::

Tf //

j

$$

h
��
//

a
//

Ta

$$T 2g

//T 2f

µ
::

T 2h

��

��
Th

a

$$

::

µ

=

=
T 2ψ+3

h +3

a2 ?G

which follows from a similar calculation using the 2-naturality of µ, the definition of h and the
multiplicative axioms for f and g.
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(2): The exactness of f ensures that its composite with ψ exhibits hj as a pointwise left extension
of gi along Tf . Since g is an isomorphism, the right hand side of (2) exhibits hj as a left extension
of aT (g) along Tf , and so h is invertible. Moreover the equation (2), reinterpretted using g−1 and

h
−1

instead of g and h, is exactly the condition that ψ be a 2-cell in Ps-T -Algc.
(3): We must verify that ψ is a pointwise left Kan extension in Ps-T -Alg. Thus given (r, r), (s, s)

and σ in Ps-T -Alg as in

(f ↓ r, π) (K, k)

(J, j)

(A, a)

(I, i)

(q,id)
//

(r,r)
��

(h,h)����
(g,g)

��
(p,id)

(f,f)
//

(s,s)

rr

λ +3

ψ +3

τ +3 =

(f ↓ r, π) (K, k)

(A, a)

(I, i)

(q,id)
//

��
(g,g)

��
(p,id)

(s,s)

��

σ +3

(3)

in which λ is the comma object, we must exhibit a unique 2-cell τ in Ps-T -Alg satisfying (3). Recall
that comma objects in Ps-T -Alg are computed as in K, and that the projections may be taken to be
strict. Above we have denoted by π : T (f ↓ r) → f ↓ r the 1-dimensional part of (f ↓ r)’s pseudo
T -algebra structure. Forgetting the pseudo algebra and pseudomorphism structures, one does have a
unique 2-cell τ in K satisfying (3), so our task is to show that this 2-cell τ is an algebra 2-cell, which
is to say that s(τk) = T (τ)(hT (r))(hr).

Since (hλ)(ψp) is an algebra 2-cell, we have

T (f ↓ r) TK

K

J

A

I

f ↓ r

Tq //

k
��

r
��

h����g

��
p

��
π

q //

f //

=

λ +3

ψ +3

=

T (f ↓ r) TK K

J

A

I

f ↓ r

TI TJ

TA

Tq // k //

r

��

hww''
g

��

p

oo π

��
Tp

Tf //

Tg ��i��

��
Tr

j

��Th��

a
��

Tλ+3

Tψ+3

g +3 h
−1

+3

r−1
+3=

(4)

and by the algebraic cocompleteness of A, the invertibility of g, h
−1

and r−1, and Example 2.4.2,
these composites exhibit hrk as a left Kan extension of gpπ along Tq. Thus it suffices to verify the
algebra 2-cell axiom only after precomposition with the composite on the left hand side of (4). This
is done in the calculation

•

•

•

•••

zz
π Tq

$$

Ts

��
a
oo//

g

��

p

•

•

// oo

��

��

��
DD

λ 6>

6>ψ

τ +3 s +3

=

=

•

•

•

•••

��
π Tq

��

Ts

��
a
oo//

g

��

p

•// oo

��

σ +3 s +3

=

=

•

•

•

•••

��
π Tq

��

Ts

��
a
oo//

g

��

p

•
��

����

g +3

Tσ+3 =

•

•

•

•••

zz
π Tq

$$

Ts

��
a
oo//

g

��

p
• •




//

++��

}}

��
g +3 Tψ BJ

BJTτ

Tλ+3

=

•

•

•

•••

zz
π Tq

$$

Ts

��
a
oo//

g

��

p

•

• •

// oo

��
oo

��
AA

��

��

λ +3 r +3

h +3

Tτ +3
6>ψ

=

which uses the definition of τ and the algebra 2-cell axioms for σ, λ and ψ. �
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The condition on (A, a) in Theorem 2.4.4 of being algebraically cocomplete relative to (f, f)
ensures in particular that the pointwise left extension ψ exists, and so in the language of Definition
2.2.1, Theorem 2.4.4(3) says the following.

Corollary 2.4.5. Suppose (K, T ) is a 2-monad, K has comma objects, (f, f) : (I, i) → (J, j)
is an exact pseudomorphism of pseudo T -algebras, and (A, a) is algebraically cocomplete. Then any
pseudomorphism (g, g) : (I, i)→ (A, a) admits algebraic left extension along (f, f).

3. The Main Theorem and applications

In the situations in which we wish to apply Corollary 2.4.5, (f, f) itself comes from a particular
monad theoretic context. This context comes from the theory of internal algebras as described in
[32]. One has three 2-monads (M, R), (L, S) and (K, T ) participating in this context, with

(1) T describing the type of ambient structure,
(2) S describing the one type of structure that can be considered as internal to any pseudo

T -algebra A,
(3) R describing another type of structure that can be considered as internal to any pseudo

T -algebra A, and
(4) one has forgetful functors UG

A : S-Alg(A) → R-Alg(A) definable from the context, where
S-Alg(A) (resp. R-Alg(A)) is the category of S-algebras (resp. T -algebras) internal to A.

This context is established in Section 3.1 and in particular, UG
A is given in Definition 3.1.4. The point

of this article is to understand the systematic computation of the left adjoint to UG
A . In Section 3.2

we explain that under the right conditions this is obtained via a process of algebraic left extension.
Then in Section 3.3 we describe the main theorem of this article, which roughly speaking says that
for contexts which arise from polynomial monads in Cat, one always has the right conditions. From
[32, 33] this result covers many situations arising from operads, and we give examples in Section 3.4.

3.1. Forgetful functors between categories of internal algebras. Recall from [32] that
given 2-monads (L, S) and (K, T ), an adjunction F : (L, S) → (K, T ) between them consists of (1)
a 2-functor F! : L → K, (2) a 2-natural transformation F c : F!S → TF! providing the coherence of a
colax monad morphism, and (3) a right adjoint F ∗ : K → L of F!. We denote by F l : SF ∗ → F ∗T
the mate of F c, which endows F ∗ with the structure of a lax monad morphism. By virtue of this
structure the 2-functor F ∗ lifts to any of the 2-categories of algebras of T and S compatibly with the
inclusions amongst them, we denote by F such liftings.

Definition 3.1.1. ([32] Definition 3.1.4) Let F : (L, S)→ (K, T ) be an adjunction of 2-monads,
suppose that L has a terminal object 1, and let A be a pseudo T -algebra. An S-algebra internal to
A (relative to F ) is a lax morphism 1→ FA of S-algebras. The category of S-algebras internal to A
is defined to be Ps-S-Algl(1, FA) and is denoted as S-Alg(A).

One may regard an operad T with set of colours I as a 2-monad on Cat/I following [33], and as
explained in Example 3.2.1 of [32]

(1) One has an adjunction of 2-monads (Cat/I, T )→ (Cat,S).
(2) A T -algebra in a pseudo S-algebra V in the sense of Definition 3.1.1, is an algebra for the

operad T in (the symmetric monoidal category) V in the usual sense.

Given a morphism F : S → T of operads, one has a forgetful functor

T -Alg(V) −→ S-Alg(V) (5)

and we now give the general monad-theoretic context giving rise to such forgetful functors.
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Definition 3.1.2. Let H : (M, R) → (K, T ) and F : (L, S) → (K, T ) be adjunctions of 2-
monads. Then an adjunction of 2-monads over T is an adjunction G : (M, R)→ (L, S) of 2-monads
such that (F!, F

c)(G!, G
c) = (H!, H

c), as colax morphisms of 2-monads.

Remark 3.1.3. The condition that (F!, F
c)(G!, G

c) = (H!, H
c) as colax morphisms of 2-monads

says that F!G! = H! at the level of 2-functors, and that Hc is the composite

F!G!R F!SG! TF!G!
F!G

c

// F cG!//

T -Algs S-Algs

R-Algs

F //

G����H

K L

M

F ∗ //

G∗����H∗

UT



US

UR



∼=
γ

∼=
γ

on the left. Taking right adjoints of F!G! = H! gives an isomorphism γ : G∗F ∗ ∼= H∗ compatible with
the lax monad morphism coherences, that is, this isomorphism is a 2-cell in MND(2-CAT) in the
sense of [25]. From the formal theory of monads, this compatibility gives a lifting of γ to γ making
the prism on the right in the previous display commute. From the explicit description of F , G, H
and γ, see Remark 3.1.3 of [32] for an indication, one may easily verify directly that γ lifts to any of
the other types of 2-categories of algebras of R, S and T .

Since F ∗, G∗ and H∗ are right adjoints they preserve the terminal object 1, and moreover since
UR, US and UT are monadic they create all limits, and so F , G and H also preserve 1. For the sake
of convenience, we assume terminal objects are chosen so that they are preserved strictly by these
2-functors, so for example, G(1) = 1.

Definition 3.1.4. In the context of Definition 3.1.2 in which L and M have terminal objects,
and given A ∈ Ps-T -Alg, one has a functor

UG
A : S-Alg(A) −→ R-Alg(A) a 7→ γAG(a)

with object map as indicated.

Examples 3.1.5. As in Notation 3.3.1 of [32] we denote by

F : (Cat/I, S) −→ (Cat/J, T )

the adjunction of 2-monads arising, as in Examples 3.2.2 of [32], from a morphism of operads F : S →
T with underlying object map f : I → J . Since the process which regards operads as polynomial
2-functors is functorial, indeed it is the functor N of Proposition 3.2 of [33], the above adjunction
is over S. Thus we are in the context of Definition 3.1.4, and for a given pseudo S-algebra V , the
forgetful functor UF

V is exactly (5).

3.2. Algebraic left extension between internal algebra classifiers. In the general situation
of Definition 3.1.4, it is of interest in examples to understand how to compute the left adjoint to UG

A .
From [32] we know that under some conditions on an adjunction F : (L, S) → (K, T ) of 2-monads,
one has a universal strict T -algebra T S containing an internal S-algebra, called the internal algebra
classifier with respect to F .
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In this section we will see that if this is so for all the adjunctions of 2-monads participating in
a given instance of Definition 3.1.4, then one has a strict morphism TG : TR → T S of T -algebras
between the corresponding internal algebra classifiers, and UG

A can then be regarded as the process
of precomposing with TG. Thus under the right conditions, the left adjoint to UG

A will be computed
via algebraic left extension along TG.

Let us recall some of the theory of internal algebra classifiers from [32]. Given an adjunction of
2-monads F as above, one has the liftings F of F ∗ to the other 2-categories of algebras, as recalled
in Section 3.1, and from these one may exhibit a canonical 2-functor

JF : T -Algs −→ S-Algl.

When F = 1(K,T ), this is just the inclusion JT : T -Algs ↪→ T -Algl. See [32] Remark 4.1.1 for more

detail. The left adjoint to JF when it exists is denoted (−)†F , and when L and thus S-Algl has a

terminal object 1, the strict T -algebra 1†F is (T S, aS), the internal S-algebra classifier of [32] Definition
4.1.2.

The circumstances under which T S exists and is well-behaved are codified in

Definition 3.2.1. An adjunction F : (L, S)→ (K, T ) of 2-monads is internalisable when

(1) K and L have all limits and colimits,
(2) K is of the form Cat(E) for some category E with pullbacks,
(3) S and T have rank1, and
(4) T preserves internal functors whose object maps are invertible.

In other words F is internalisable precisely when it satisfies all the hypotheses of Proposition
4.1.4 of [32], a mild variant of which we recall now.

Proposition 3.2.2. [32] If F : (L, S) → (K, T ) is an internalisable adjunction of 2-monads,

then (−)†F and hence T S exist, and one has equivalences

Ps-T -Alg(T S, A) ' Ps-S-Algl(1, FA)

pseudonaturally in A ∈ Ps-T -Alg.

Thus given an internalisable adjunction F : (L, S) → (K, T ) of 2-monads, one has a strict T -
algebra T S determined up to isomorphism by the 2-natural isomorphisms

ϕFA : T -Algs(T
S, A) ∼= S-Algl(1, FA) ϕ′FA : Ps-T -Alg(T S, A) ' Ps-S-Algl(1, FA)

as on the left, which moreover enjoys a bicategorical universal property determining it up to equiva-
lence amongst all pseudo T -algebras, as encoded by the pseudo natural equivalences on the right. In
particular by Definition 3.1.1 one has

Ps-T -Alg(T S, A) ' S-Alg(A)

for any pseudo T -algebra A.

Construction 3.2.3. Let F : (L, S) → (K, T ) and H : (M, R) → (K, T ) be adjunctions of
2-monads, and G : (M, R)→ (L, S) be an adjunction of 2-monads over T in the sense of Definition
3.1.2. Suppose that F and H are internalisable in the sense of Definition 3.2.1. We now construct
the strict T -algebra morphism

TG : TR −→ T S.

1This means that the underlying endofunctors of S and T preserve λ-filtered colimits for some regular cardinal λ.
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For a general adjunction G of 2-monads over T , the forgetful functor UG
A is

γA ◦G(−) : Ps-S-Algl(1, FA) −→ Ps-R-Algl(1, HA)

by Definition 3.1.4, and this is 2-natural in A ∈ Ps-T -Alg. Restricting just to strict T -algebras A, this
restricts to γA ◦ G(−) : S-Algl(1, FA) → R-Algl(1, HA). If G is internalisable then by the Yoneda
Lemma, one has a unique strict T -algebra morphism TG : TR → T S such that

T -Algs(T
S, A) T -Algs(T

R, A)

R-Algl(1, HA)S-Algl(1, FA)

(−)◦TG
//

ϕHA��
//

γA◦G(−)

��
ϕFA

commutes for all A ∈ T -Algs.

Remark 3.2.4. In [32] the component atX of the unit of (−)†F a JF was denoted gFX : X → FX†F ,
and one defines gST := gF1 . Since ϕFTS(1TS) = gST and gRT is described similarly, TG could equally-well
be defined as the unique strict T -algebra morphism making

1 HTR

HT SGFT S

gRT //

HTG
��

//
γ
TS

��
GgST

commute in R-Algl. Using this point of view, it is straight forward to show directly that T FTG = TH .

We now explain why UG
A of Definition 3.1.4, can be identified as the process of precomposition

with TG when F and H are internalisable. To formulate this precisely, for a 2-category X , we denote
by Psd(X ,Cat) the 2-category of 2-functors X → Cat, pseudonatural transformations and modifica-
tions. In the context of Construction 3.2.3, Ps-S-Algl(1, F (−)), Ps-R-Algl(1, H(−)), Ps-T -Alg(T S,−)
and Ps-T -Alg(TR,−) are objects of Psd(Ps-T -Alg,Cat), and ϕ′F and ϕ′H are equivalences.

Proposition 3.2.5. In the context of Construction 3.2.3 one has

Ps-T -Alg(T S,−) Ps-T -Alg(TR,−)

Ps-R-Algl(1, H(−))Ps-S-Algl(1, F (−))

(−)◦TG
//

ϕ′H��
//

γ◦G(−)

��ϕ′F ∼=

in Psd(Ps-T -Alg,Cat).

Proof. By Power’s coherence theorem [18, 24] one has, for each pseudo T -algebra A, a strict
T -algebra A′ and an equivalence sA : A→ A′ in Ps-T -Alg, this being 2-natural in A. For each A, fix
a choice of adjoint pseudo inverse tA : A′ → A in Ps-T -Alg. The components of the pseudonatural
equivalences ϕ′F and ϕ′H , were described in the proof of Proposition 4.1.4 of [32], and are the vertical



ALGEBRAIC KAN EXTENSIONS ALONG MORPHISMS OF INTERNAL ALGEBRA CLASSIFIERS 17

composites in the diagram

Ps-S-Algl(1, FA) Ps-R-Algl(1, HA)
γAG(−)

//

S-Algl(1, FA
′) R-Algl(1, HA

′)
γA′G(−)

//

T -Algs(T
S, A′) T -Algs(T

R, A′)
(−)◦TG

//

T -Alg(T S, A′) T -Alg(TR, A′)
(−)◦TG

//

Ps-T -Alg(T S, A) Ps-T -Alg(TR, A)
(−)◦TG

//

F (sA)◦(−) ��

ϕF
A′ ��

i
TS,A′ ��

tA◦(−)
��

H(sA)◦(−)��

ϕH
A′��

i
TR,A′��

tA◦(−)
��

∼=

whose unlabelled regions commute on the nose, where iTS ,A′ and iTR,A′ are the inclusions. The
isomorphism in the bottom square is the mate of the identity

((−) ◦ TG)(sA ◦ (−)) = (sA ◦ (−))((−) ◦ TG).

Thus the bottom isomorphism is 2-natural in A, by the functoriality, described in [14], of the process
of taking mates. �

From Corollary 2.4.5 and Proposition 3.2.5 we obtain the following immediate

Corollary 3.2.6. Let F : (L, S) → (K, T ) and H : (M, R) → (K, T ) be adjunctions of 2-
monads, and G : (M, R) → (L, S) be an adjunction of 2-monads over T in the sense of Definition
3.1.2. Suppose that F and H are internalisable in the sense of Definition 3.2.1. Let A be a pseudo
T -algebra. If

(1) TG is exact, and
(2) A is algebraically cocomplete relative to UT (TG),

then the left adjoint of UG
A is computed by algebraic left extension along TG.

3.3. Formulating the main theorem. We understood the algebraic cocompleteness of A in
the key examples where T is M, B, S or Pfin, as commonly-encountered conditions. If one was faced
with a different T , then a similar analysis as in the proofs of Propositions 2.3.2, 2.3.3 and 2.3.4 would
express the corresponding condition on A in explicit terms. Thus it remains to be understood when
hypothesis (1) of Corollary 3.2.6 are satisfied. The main theorem of this article identifies general
conditions on G, which arise from polynomial monads over Cat, which guarantee this hypothesis.

We begin by recalling some of the background on polynomial 2-monads from [32, 33, 34]. A
polynomial from I to J in Cat [34] is a diagram

I E B Joo s p // t //

in which p is an exponentiable functor. A polynomial 2-functor is a 2-functor T : Cat/I → Cat/J
such that T ∼= ΣtΠp∆s for some polynomial (s, p, t) as above, where Σt is the process of composition
with t, ∆s is the process of pulling back along s, and Πp is right adjoint to pulling back along p.
Such polynomials form a 2-bicategory PolyCat, in which the objects are categories and a morphism
I → J is a polynomial as above. The assignment of a polynomial (s, p, t) to its associated polynomial
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2-functor ΣtΠp∆s is the effect on arrows of a homomorphism

PCat : PolyCat −→ 2-CAT.

A 2-cell (f1, f2) : (s1, p1, t1)→ (s2, p2, t2) in PolyCat is a diagram

I

E1 B1

J

B2E2

ww

s1

p1 //
t1

''
77

t2//
p2

s2

gg f2

��

f1

��

pb= =

and for S, T : Cat/I → Cat/J , a 2-natural transformation φ : S → T is polynomial when it can be
factored as φ = τPCat(f1, f2)σ where f1 and f2 are as above, σ : S ∼= PCat(s1, p1, t1) witnesses S as
a polynomial 2-functor, and τ : PCat(s2, p2, t2) ∼= T witnesses T as a polynomial 2-functor. In this
way one can speak of polynomial 2-monads, and polynomial adjunctions of 2-monads, as those in the
image PCat, modulo isomorphisms witnessing the participating 2-functors as polynomial.

Given a monad (I, T ) in PolyCat, we denote also by T the 2-monad on Cat/I obtained by
applying PCat. Our basic examples, discussed in more detail in Section 5 of [34], are

M : 1 N∗ N 1oo UN
// // B : 1 B∗ B 1oo UN

// //

Pfin : 1 Sop
∗ Sop 1oo

(US)op
// //S : 1 P∗ P 1oo UP

// //

the polynomial 2-monads for monoidal categories, braided monoidal cateories, symmetric monoidal
categories, and categories with finite products. For a general polynomial 2-monad (Cat/I, T ), we
denote its underlying endo-polynomial as

I ET BT I.oo sT pT // tT //

So in the case where T arises from an operad as in Section 3 of [33], I is the set of colours of the
operad, and BT is a groupoid whose objects are the operations of the operad and morphisms are
given by the symmetric group actions.

Monads in PolyCat are the objects of a category PolyMndCat, in which a morphism (f, F ) :
(I, S)→ (J, T ) is a commutative diagram

I ES BS I

JBTETJ

oo sS pS // tS //

f
��
//

tT
//

pTsT
oo
��

f F2
��

F1
��

pb

compatible with the monad structures on S and T . As explained in [33] such a morphism is an ad-
junction of monads in PolyCat, and the corresponding adjunction of 2-monads obtained by applying
PCat to this is denoted as

F : (Cat/I, S) −→ (Cat/J, T ).

The adjunction F! a F ∗ in this case is Σf a ∆f . The following result explains why most of the
polynomial adjunctions of 2-monads we encounter in this way are internalisable in the sense of
Definition 3.2.1. Recall, that this means that the associated internal algebra classifier exists, giving
it a strict universal property with respect to all strict algebras, and moreover, it also enjoys a
bicategorical universal property with respect to all pseudo algebras.
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Proposition 3.3.1. A polynomial adjunction of 2-monads

F : (Cat/I, S) −→ (Cat/J, T )

such that pT is a discrete fibration or opfibration with finite fibres and J is discrete, is internalisable.

Proof. Clearly Cat/I and Cat/J have all limits and colimits. Since pS is obtained by pulling
back pT , it enjoys the same properties as pT . By Theorem 4.5.1 of [34], S and T preserve sifted
colimits, and so in particular are finitary. Since J is discrete, Cat/J = Cat(Set/J). Recall from [6]
that in any 2-category of the form Cat(E) for E a category with pullbacks, codescent morphisms are
exactly those internal functors which are bijections on objects. Since codescent objects are examples
of sifted colimits, and so T preserves them, it follows that T preserves internal functors which are
bijections on objects. �

In particular for any polynomial adjunction of 2-monads

F : (Cat/I, S) −→ (Cat/J, T )

in which T is M, B, S or Pfin, Proposition 3.3.1 applies. We can now state our main theorem.

Theorem 3.3.2. Let F : (Cat/J, S) → (Cat/K, T ) and H : (Cat/I,R) → (Cat/K, T ) be
adjunctions of 2-monads, and G : (Cat/I,R) → (Cat/J, S) be an adjunction of 2-monads over T .
Suppose that F , G and H are polynomial adjunctions of 2-monads. If I, J and K are discrete and
pT is a discrete opfibration with finite fibres, then TG is exact.

The proof of this theorem will be obtained in Section 5.7.

3.4. Examples. We use the term operad to refer to what are commonly known as “coloured
symmetric operads”, and also as “symmetric multicategories”. As was explained in [33], an operad
T with set of colours I can be identified as a morphism

I E B I

1PP∗1

oo // //

��
////oo

�� ��
b
��

pb

of polynomial monads in which b is a discrete fibration, and the objects of B are the operations of
T . By applying PCat one thus obtains an adjunction of 2-monads (Cat/I, T ) → (Cat,S), which
by Proposition 3.3.1 is internalisable since pS : P∗ → P is a discrete fibration with finite fibres.
Moreover, one can recover Cat-operads as such polynomial monad morphisms in which b has the
structure of a split fibration, and clubs in the sense of Kelly [12] are recovered by such polynomial
monad morphisms in which I = 1. Similarly for morphisms of operads and their variants, and
so the categories of operads, Cat-operads and clubs are all canonically identifiable subcategories
of PolyMndCat/S, and thus after applying PCat, as categories of internalisable adjunctions of 2-
monads over (Cat,S).

A symmetric monoidal category V can be regarded as an operad, with colours the objects of V ,
and operations (A1, ..., An) → B given by morphisms A1 ⊗ ... ⊗ An → B. This process is the effect
on objects of forgetful 2-functors

Us : S-Algs −→ Opd Ups : Ps-S-Alg −→ Opd

into the 2-category Opd of operads, from the 2-category Ps-S-Alg (resp. S-Algs) of symmetric
monoidal categories and strong monoidal functors (resp. of symmetric strict monoidal categories and
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strict monoidal functors). As explained in Section 6.4 of [32], the process2 T 7→ ST is the effect on
objects of a left 2-adjoint to Us and a left biadjoint to Ups.

We denote by F this left 2-adjoint Opd → S-Algs. Given a morphism of operads G : R → T ,
since SG : SR → ST and F(G) are both obtained from the universal property of SR = F(R), one
has SG = F(G). Denoting I and J for the set colours of R and T respectively, the adjunctions of
2-monads

G : (Cat/I,R) −→ (Cat/J, T ) (Cat/I,R) −→ (Cat,S) (Cat/J, T ) −→ (Cat,S)

in this situation conform to the hypotheses of Theorem 3.3.2. Thus by applying Proposition 2.3.3,
Corollary 2.4.5 and Theorem 3.3.2, one obtains the following result.

Corollary 3.4.1. Let G : R→ T be a morphism of operads.

(1) F(G) : F(R)→ F(T ) is an exact symmetric monoidal functor.
(2) If V is symmetric monoidal closed and cococomplete, and H : F(R) → V is a symmetric

strong monoidal functor, then the left Kan extension F(T ) → V of H along F(G) is a
symmetric strong monoidal functor.

In Part 3 of [3] various contemporary operadic notions: cyclic operads, modular operads and
various notions properad; are exhibited as algebras of polynomial monads defined over Set, in which
the middle map of the underlying polynomial has finite fibres. As explained in [15, 29] such polyno-
mial monads may be identified with ordinary (coloured symmetric) operads whose symmetric group
actions are Σ-free. Thus via [33] these operads may also be regarded as polynomial monads now over
Cat. Hence for a Σ-free operad T with set of colours I, one has two associated polynomial monads.
Denoting the associated categorical polynomial monad of [33] as on the left

I ET BT Ioo s p // t // I π0ET π0BT Ioo π0s π0p // π0t //

the corresponding Set-based polynomial used in [3] is given on the right, where π0 : Cat → Set
is the process of taking the connected components of a category. Recall, BT is the groupoid whose
objects are the operations of T , and morphisms are obtained from the symmetric group actions. The
property of Σ-freeness is equivalent to saying that BT is equivalent to a discrete category. Thus BT

is a groupoid in which there is at most one morphism between any two objects, and the functor
qBT : BT → π0BT which sends objects of BT to their connected components, is an equivalence. The
“operations” of the Set-based polynomial monad on the right, are the operations of T modulo the
symmetric group actions.

Consistently with [33], we denote by T also the 2-monad on Cat/I obtained by applying PCat

to (s, p, t), and by T/Σ the 2-monad on Cat/I induced similarly by (π0s, π0p, π0t). In fact one can
define the 2-monad T/Σ even when the operad T is not Σ-free, but then T/Σ will not necessarily be
a polynomial monad3. A substantial part of [33] is devoted to understanding how T and T/Σ are
related. By the general definition of T/Σ one always has a morphism qT : T → T/Σ of 2-monads,
and thus an induced 2-functor qT : T -Algs → T/Σ-Algs. Strict algebras of T/Σ are the Cat-valued
algebras of the original operad T , the strict algebras can be identified as “weakly-equivariant” Cat-
valued algebras of the original operad T , and in these terms qT is the inclusion. When the original

2As in [33] we denote by T also the associated 2-monad on Cat/I. When T is the terminal operad Com, this

associated 2-monad (on Cat) is just S, and so given these conventions, its is also consistent to write ComT instead of

ST , as was done in [32].
3For instance when the operad T is Com, T is S whereas T/Σ is the 2-monad for commutative monoids, which is

not cartesian, and thus not polynomial.
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operad T is Σ-free various nice things happen. To begin with, T/Σ is a polynomial monad and qT
is a morphism of polynomial monads by Theorem 6.6 of [33]. Moreover, qT is now part of a Quillen
equivalence with respect to the Lack model structures [19] on T -Algs and (T/Σ)-Algs, by Theorem
7.7 of [33].

Even in the Σ-free case, there is an advantage to using T over T/Σ, despite the fact that the
polynomial which generates T/Σ is simpler. This advantage is that for T , there is as explained
above, a polynomial adjunction of 2-monads (Cat/I, T ) → (Cat,S), and the notion of internal
algebra thus arising coincides with the notion of algebra for the operad T internal to a symmetric
monoidal category, as explained at the end of Section 4 of [33]. This is not so for T/Σ as the following
example shows.

Example 3.4.2. There is a Σ-free operad NSOp for non-symmetric operads with one colour
described as a Set-based polynomial monad in Section 9.2 of [3]. One may identify the set of colours
of NSOp as N. Suppose there is a polynomial monad morphism as on the left

N π0ENSOp π0BNSOp N

1PP∗1

oo // //

��
////oo

�� �� ��
pb

N π0ENSOp π0BNSOp N

1NN∗1

oo // //

��
////oo

�� �� ��
pb

giving an adjunction of 2-monads (Cat/N,NSOp/Σ)→ (Cat,S), for which the corresponding notion
of internal algebra agrees with that of non-symmetric operads within a symmetric monoidal category.
Then since the polynomial of NSOp/Σ is componentwise discrete, it would factor through the poly-
nomial underlying the monoidal category 2-monad M, as on the right in the previous display. The
internal structure arising from the resulting adjunction of 2-monads (Cat/N,NSOp/Σ)→ (Cat,M)
is thus a type of structure expressable within any monoidal category V , which when V happens to be
symmetric, coincides with the notion of non-symmetric operad within V . In other words one would
conclude that the notion of non-symmetric operad makes sense in any monoidal category. However,
to express the associative law of substitution for an operad one requires at least a braiding.

Example 3.4.3. The Σ-free operads CycOp and ModOp for cyclic and modular operads respec-
tively, are described as Set-based polynomial monads in Sections 9.6 and 10.1 of [3], and one has an
evident inclusion J : CycOp ↪→ ModOp witnessed at the level of polynomials. Thus SModOp has the
universal property that for all symmetric monoidal categories V , modular operads in V may be re-
garded as symmetric strong monoidal functors SModOp → V . Similarly cyclic operads in V correspond
to symmetric strong monoidal functors SCycOp → V , and composition with SJ : SCycOp → SModOp

gives the forgetful functor

UJ
V : ModOp(V) −→ CycOp(V)

between categories of modular and cyclic operads in V . By Corollary 3.4.1, the left adjoint to UJ
V ,

which is known as the modular envelope construction, is given by left Kan extending along SJ , when
V is symmetric monoidal closed and cocomplete.

Examples 3.4.4. Let T be an operad with set of colours I and take G : R → T of Corollary
3.4.1 to be the inclusion of I as a discrete category. Then the 2-monad R in this case is just the
identity on Cat/I, and the category of R-algebras internal to a symmetric monoidal category V is
just the category VI of I-indexed families in V . When V is symmetric monoidal closed cocomplete,
left Kan extension and restriction along F(G) gives the monad on VI whose algebras are algebras of
the operad T in V by Corollary 3.4.1, and since the adjunction LanF(G) a UG

V in this case is monadic.
In particular when V = Set, one recovers T/Σ (just seen as acting on Set/I).



22 MARK WEBER

Remark 3.4.5. As explained in Section 2.3 of [32], non-symmetric (coloured) operads may be
regarded as adjunctions of 2-monads into (Cat,M). For braided operads one instead works over
(Cat,B). Thus in the same way as with (Cat,S) above, one obtains non-symmetric and braided
analogues of Corollary 3.4.1. Moreover for each of these variants, Theorem 3.3 may be applied to
give a version of Corollary 3.4.1 in which G : R→ T is a morphism of Cat-operads.

Example 3.4.6. The non-symmetric operad for pointed sets includes into that for monoids. By
applying the non-symmetric analogue of Corollary 3.4.1 in this case, one recovers the construction
of Dubuc [8] of a free monoid on a pointed object as the process of left Kan extending along F(G).
This example is considered in more detail in [23].

4. Exact squares

In this section we study exact squares in various contexts. In Section 4.1 we recall exact squares
in Cat as originally defined by Guitart [9]. In Section 4.2 we show that comma squares are exact
in general, and then in Section 4.3 we explain when pullbacks and bipullbacks are exact. A first
application of these results we show in Section 4.4, that if a 2-monad (K, T ) is colax-idempotent,
then all colax morphisms of T -algebras are exact. By contrast there are many examples of non-exact
morhisms of T -algebras when T is M, S or B, as we see in Section 4.5, where exactness in these
cases is characterised in combinatorial terms. Finally in Section 4.6 we explain why, in the context
of Theorem 3.3.2, µT is diexact.

4.1. Exact squares in Cat. In this section we recall what it means for a lax square

P B

CA

q //

g
��
//

f

��
p

φ +3

(6)

in Cat to be exact in the sense of Guitart [9]. This has various formulations recalled in Theorem
4.1.1. We give a few other equivalent conditions in Lemmas 4.1.3, 4.1.4 and 4.1.5 which bring out the
combinatorics inherent in the notion. Lemma 4.1.4 will be generalised to the setting of lax squares
of 2-categories in Section 5.

Recall that a profunctor from a small category A to a small category B is a functor F : Aop×B →
Set, and that the composite of F : A→ B and G : B → C is given in terms of coends by the formula

(G ◦ F )(a, c) =

∫ b∈B
G(b, c)× F (a, b).

In particular from a functor f : A → B, one has profunctors B(f, 1) : A → B and B(1, f) : B → A
defined on objects by

B(f, 1)(a, b) = B(fa, b) B(1, f)(b, a) = B(a, fb).

One has a bicategory Prof of small categories and profunctors between them, with horizontal com-
position given by the above coend formula, and the assignments f 7→ B(f, 1) and f 7→ B(1, f) define
the effect on morphisms of identity on objects locally fully faithful homomorphisms

Catco −→ Prof Catop −→ Prof.

For any functor f one has an adjunction B(f, 1) a B(1, f). Note in particular that to give a lax
square (6) is to give a 2-cell

φ̃ : B(q, 1) ◦ A(1, p) −→ C(f, g)
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in Prof.

Theorem 4.1.1. [9] For a lax square (6) in Cat the following are equivalent:

(1) φ̃ is an isomorphism.
(2) ∀a ∈ A, the functor a ↓ p→ fa ↓ g induced by φ is initial.
(3) ∀b ∈ B, the functor q ↓ b→ f ↓ gb induced by φ is final.
(4) For any natural transformation ψ which exhibits l as a pointwise left Kan extension of h

along f , the composite on the left exhibits lg as a pointwise left Kan extension of hp along
q.

P B

A C

V

f //

l����h

ψ +3

q //

g
��

p
��

φ +3

P A

B C

V

g //

r����k
ks ρ

p //

f
��

q
��

ks φ

(5) For any natural transformation ρ which exhibits r as a pointwise right Kan extension of k
along g, the composite on the right exhibits rf as a pointwise right Kan extension of kq along
p.

Definition 4.1.2. [9] A lax square (6) in Cat is exact when it satisfies the equivalent conditions
of Theorem 4.1.1.

In [9] Guitart took formulation (1) of Theorem 4.1.1 as the definition of exactness, and this clearly
generalises directly to the enriched setting, and further still to the setting of proarrow equipments
[35, 36]. This line of generalisation is pursued in [16, 23]. We will also use this point of view below
in Section 5.2 when discussing exact squares of 2-categories. However, in Definition 2.4.1 above, we
instead generalised formulation (4) in the obvious way.

Let us unpack formulation (1) directly. For a ∈ A, b ∈ B and x ∈ P , one has functions

B(qx, b)× A(a, px)→ C(fa, gb) (β, α) 7→ gβ ◦ φx ◦ fα

which are dinatural in x, and the corresponding component of φ̃ is the induced function

φ̃a,b :

∫ x∈P
B(qx, b)× A(a, px) −→ C(fa, gb).

To proceed further one must compute the above coend. The comma category q ↓ b, whose objects
are pairs (x, β) where x ∈ P and β : qx → b, comes with a functor q ↓ b → P given on objects by
(x, β) 7→ x. Similarly the comma category a ↓ p comes with a functor a ↓ p→ P , and so one can pull
these back to produce the category (q ↓ b) ×P (a ↓ p). A typical object of this category is a triple
(x, β, α) where x ∈ P , β : qx→ b and α : a→ px, and for each x ∈ P one has a function

κx : B(qx, b)× A(a, px) −→ π0((q ↓ b)×P (a ↓ p))
which sends (β, α) to the connected component which contains (x, β, α).

Lemma 4.1.3. The family of functions (κx : x ∈ P ) is the universal dinatural family which
exhibits ∫ x∈P

B(qx, b)× A(a, px) = π0((q ↓ b)×P (a ↓ p)).
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We leave the elementary task of exhibiting a direct proof of this result to the reader, which consists
of verifying that the κx are dinatural in x, and that κx satisfies the appropriate universal property.
Note however that we do recover this result below from a much more general result in Remark 5.4.9.

Regarding C(fa, gb) as a discrete category, one has a functor

φa,b : (q ↓ b)×P (a ↓ p) −→ C(fa, gb)

given on objects by (x, β, α) 7→ gβ ◦ φx ◦ fα. A morphism (x1, β1, α1)→ (x2, β2, α2) is by definition
a morphism γ : x1 → x2 of P such that p(γ)α1 = α2 and β1 = β2q(γ), and given such a γ,

g(β1)φx1f(α1) = g(β2)φx2f(α2) because of the naturality of φ. Since φ̃a,b = π0(φa,b) an explicit
combinatorial characterisation of what it means for φ to be exact is given as follows.

Lemma 4.1.4. A lax square

P B

CA

q //

g
��
//

f

��
p

φ +3

in Cat is exact iff for all a ∈ A and b ∈ B, the functor π0 : Cat → Set which on objects sends a
category to its set of connected components, inverts the functor φa,b defined above.

In the context of Lemma 4.1.4, given a ∈ A, b ∈ B and γ : fa → gb we denote by Factφ(a, γ, b)
the following category. Its objects are triples (α, x, β) where x ∈ P , α : a → px and β : qx → b,
such that g(β)φxf(α) = γ. An arrow (α1, x1, β1) → (α2, x2, β2) is an arrow δ : x1 → x2 such that
p(δ)α1 = α2 and β1 = β2q(δ). Identities and compositions inherited from P .

Since π0(φa,b) is bijective iff the fibres of φa,b are connected, and clearly φ
−1

a,b{γ} = Factφ(a, γ, b),
Lemma 4.1.4 reformulates to the following often-convenient combinatorial characterisation of exact-
ness, from which the proof of Theorem 4.1.1 is easily obtained.

Lemma 4.1.5. A lax square

P B

CA

q //

g
��
//

f

��
p

φ +3

in Cat is exact iff for all a ∈ A, b ∈ B, and γ : fa→ gb, the category Factφ(a, γ, b) defined above is
connected.

4.2. Comma squares. In this section we recall that in our setting, comma squares are exact.
This result, given as Proposition 4.2.2 below, is really due to Ross Street, and as mentioned already,
appears as Proposition 24 of [26]. We go over this result again carefully here because doing so leads
to other general results not in the literature in Section 4.3.

Recall that the left Kan extension ψ, which exhibits l as a (pointwise) left extension of h along f

A C

V

f //

l����h

ψ +3

is preserved by k : V → W when kψ exhibits kl as a (pointwise) left Kan extension of kh along f ,
and ψ is said to be an absolute (pointwise) left Kan extension when it is preserved by all arrows out
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of V . It is true in general that left adjoints preserve (pointwise) left Kan extensions, and that the
unit η : 1A → uf of an adjunction f a u : C → A exhibits u as an absolute left Kan extension of 1A
along f . In fact by Proposition 20 of [26] they are also absolute pointwise left Kan extensions.

Other basic well known facts we shall routinely use below concern the “composability” and “can-
cellability” of left Kan extensions [28]. That is, suppose that one has

I J K

A

f // g //

kww''
i

j
��

ψ1 +3 ψ2 +3

in which ψ1 exhibits j as a left Kan extension of i along f . Then the composability of left Kan
extensions says that if ψ2 exhibits k as a left Kan extension of j along k, then the composite exhibits
k as a left Kan extension of i along gf , and the cancellability of left Kan extensions says the converse.

Lemma 4.2.1. In a 2-category with comma objects, the vertical composite of comma squares as
on the left, can be factored as

q ↓ h D

f ↓ g B

CA

q //

g
��
//

f

��
p

λ +3

q2 //

h
����

p2
λ2 +3

=
q ↓ h f ↓ gh D

CA

q3 //

gh
��
//

f

��
p3

λ3 +3
pp2 $$

k //

q2

##
=

=

where λ3 is another comma square, and id : pp2 → p3k exhibits p3 as an absolute left Kan extension
of pp2 along k.

Proof. By the universal property of λ3 there is a unique k : q ↓ h → f ↓ gh as shown, that is,
such that p3k = pp2, q3k = q2 and λ3k = (gλ2)(λp2). Note also that one has p4 : f ↓ gh → f ↓ g
unique such that pp4 = p3, qp4 = hq3 and λp4 = λ3 by the universal property of λ. Using the
universal property of λ2 there is a unique i : f ↓ gh→ q ↓ h such that p2i = p4, q2i = q3 and λ2i = id.
Since p3ki = p3, q3ki = q3 and λ3ki = λ3, we have ki = 1f↓gh. Since pp2ik = pp3k, qp2ik = hq2, and
λp2ik = λ3k we have a commutative square as on the left in

fpp2 fpp2ik

gqp2ikgqp2

f id //

λp2ik
��

//
gλ2

��
λp2

qp2 qp2ik

hq2ikhq2

qη′ //

λ2ik
��

//
hid

��
λ2

and so by the universal property of λ, there is a unique η′ : p2 → p2ik such that pη′ = id and
qη′ = λ2. Since q2ik = q2 and λ2i = id we have a commutative square as on the right in the previous
display, and so by the universal property of λ2, there is a unique η : 1q↓h → ik such that p2η

′ = η
and q2η = id. Since p3kη = id and q3kη = id, we have kη = id. Since pη′i = id and qη′i = id we have
η′i = id, and so p2ηi = id, moreover q2ηi = id, and so ηi = id. Thus η is the unit of an adjunction
k a i in which the counit is an identity. Since pp2η = id, and units of adjunctions are absolute left
Kan extensions, the result follows. �

Proposition 4.2.2. [26] If f : A → C and g : B → C are morphisms of a 2-category K with
comma objects, then the defining comma square of f ↓ g is exact.
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Proof. If ψ exhibits l as a pointwise left Kan extension h along f then by definition the composite
on the left

f ↓ g B

A C

V

f //

l����h

ψ +3

q //

g
��

p
��

λ +3

q ↓ h f ↓ gh D

CA

V

q3 //

gh
��
//f��

p3
λ3 +3

pp2 $$

k //

q2

##
=

=

��h �� l

ψ +3

exhibits lg as a left Kan extension of hp along q. We must show that this composite is itself a
pointwise left Kan extension. Let h : D → B. Factoring the vertical composite of the comma squares
defining f ↓ g and q ↓ h as in Lemma 4.2.1, and pasting this on top of ψ gives the diagram on the
right in the previous display. Since id exhibits hp3 as a left Kan extension of hpp2 along k by Lemma
4.2.1, and (lλ3)(ψp3) exhibits lgh as a left Kan extension of hp3 along q3, the composite exhibits lgh
as a left Kan extension of hpp2 along q2 by the composablility of left Kan extensions. �

4.3. Pullbacks and bipullbacks. We now turn to the discussion of when pullback squares
and bipullback squares are exact. The natural conditions we find involve the notions of fibration
and [26], and their bicategorical analogues [27] as introduced by Street, in a 2-category. Elementary
descriptions of fibrations and split fibrations in terms of cartesian 2-cells were given in Section 2 of [31]
and Section 3 of [30]. The bicategorical notions we require, such as bipullbacks and the bicategorical
analogues of fibrations and opfibrations, as well as isofibrations, were given an exposition in Section 3
of [30]. In particular, the bicategorical analogues of fibrations and opfibrations are called bi-fibrations
and bi-opfibrations.

There are two ways to express that an arrow f : A → C in a 2-category K with comma objects
has the structure of a fibration (resp. opfibration). There is an elementary description in terms of
f -cartesian (resp. f -opcartesian) 2-cells generalising the notion of a cleavage. Alternatively there is a
2-monad ΦK,C (resp. ΨK,C) on K/C, and then to give f the structure of a fibration (resp. opfibration)
is to give it a pseudo ΦK,C-algebra (resp. a pseudo ΨK,C-algebra) structure. If K also has pullbacks,
then the equivalence of these alternative definitions is, as explained in Theorem 2.7 of [31], about
the interplay between comma objects involving f and pullbacks involving f .

Let us recall some of this interplay. Given a pullback square and the corresponding comma square

P B

CA

q //

g
��
//

f

��
p pb

f ↓ g B

CA

q2 //

g
��
//

f

��
p2

λ +3

one has the unique map i : P → f ↓ g such that p2i = p, q2i = q and λi = id. Theorem 2.7 of [31]
says in part that g is a fibration iff for all f , i has a right adjoint r over A, and for this adjunction
the unit is invertible. Dually, f is an opfibration iff for all g, i has a left adjoint l over B, and for
this adjunction the counit is invertible.

To obtain the adjunction i a r from the property that g is a fibration, one takes a g-cartesian
lift λ2 : q3 → q2 of λ, induces r : f ↓ g → P as the unique map such that pr = gp2 and qr = q3,
and then one obtains the counit ε : ir → 1f↓g as the unique 2-cell such that p2ε = id and q2ε = λ2.
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The g-cartesianness of λ2 enables us to verify ε is indeed the counit of an adjunction, and the fully
faithfulness of i ensures that the unit ν : 1P → ri is invertible. All this is explained in more detail in
the proof of Theorem 2.7 in [31]. Dually, to obtain the adjunction l a i from the property that f is
an opfibration, one takes an f -opcartesian lift λ′2 : p2 → p3 of λ, induces l : f ↓ g → P as the unique
map such that ql = fq2 and pl = p3, and then one obtains the unit ν ′ : 1f↓g → il as the unique 2-cell
such that q2ν

′ = id and p2ν
′ = λ′2. The reason for recalling this detail is to obtain

Lemma 4.3.1. Let f , g and i : P → f ↓ g be given as above, in a 2-category K with comma
objects and pullbacks. If g is a fibration then the composite 2-cell on the left in

P f ↓ g B

CA

i // q2 //

g
��
//

f

��
p2

p
$$

q

##

λ +3pν +3

=

f ↓ g P B

CA

l // q //

g
��
//

f

��
p

p2 $$

q2

##

id +3p2ν′+3

=

is the identity. If f is an opfibration then the composite 2-cell on the right in the previous display is
λ.

Proof. The case where f is an opfibration follows immediately from the definitions and was
observed in [31] Example 2.20. Supposing that g is a fibration, note that both λ and fp2ν

′ are equal
to the composite

P f ↓ g

P f ↓ g B

CA

1
�� zz

r

i //

1
��

i
// q2 //

g

��
//

f

��

p q

88

ν +3
ε +3

=

=

because of one of the triangle equations for the adjunction i a r, and since by the definition of ε
recalled above one has gq2ε = λ. �

There is an analogous discussion for bi-fibrations and bi-opfibrations, involving the interplay of
comma objects and isocomma objects, and an analogue of Lemma 4.3.1 for bi-fibrations and bi-
opfibrations. Recall that given arrows g : B → C and f : A → C in K, their isocomma object is a
square as on the left

f ↓∼= g B

CA

q //

g
��
//

f

��
p ∼=

λ
P B

CA

//

g
��
//

f

��
∼=

satisfying the analogous universal property to that of comma object, but only amongst squares over f
and g with an invertible 2-cell. Recall that a pseudo-commuting square as on the right in the previous
display is a bipullback when the induced map P → f ↓∼= g in K is an equivalence. The following
two lemmas will enable us to adapt the arguments which exhibit exact pullbacks, to arguments that
exhibit exact bipullbacks, in the proof of Proposition 4.3.4.
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Lemma 4.3.2. Given a pullback square

P B

CA

q //

g
��
//

f

��
p pb

in a 2-category with comma objects, in which g is an isofibration and f has a fully faithful left (resp.
right) adjoint. Then q has a fully faithful left (resp. right) adjoint.

Proof. We prove the result involving left adjoints; the result involving right adjoints is dual
(work in Kco). Denote by l : C → A, η : 1C → fl and ε : lf → 1A the data of the adjunction l a f ,
and note that η is invertible. Since g is an isofibration we have h : E → E and an isomorphism
η′ : 1E → h such that gη′ = ηg and so gh = flg. Using the pullback there exists unique l′ : E → A
such that pl′ = lg and ql′ = h. We have pl′g = lgq = lfp and ql′q = hq, so that εp : pl′q → p and
η′−1q : ql′q → q. Since the triangle equations for l a f can be written as fε = η−1f and εl = lη−1,
we have fεp = η−1fp = η−1gq = gη′−1q, and so we have ε′ : l′q → 1P unique such that pε′ = εp and
qε′ = η′−1q. It suffices by Lemma 2.6 of [31] to show that qε′ and ε′l are invertible, and qε′ clearly is
by definition. The invertibility of pε′ is equivalent to that of pε′l′ and qε′l′ using the pullback. Now
qε′l′ = η′−1ql′ and pε′l′ = εpl′ = εlg = lη−1g so the result follows. �

Lemma 4.3.3. Suppose that e : Q → P has a fully faithful left or right adjoint, and that the
square on the left

P B

CA

q //

g
��
//

f

��
p

φ +3

Q B

CA

qe //

g
��
//

f

��
pe

φe +3

is an exact square in a 2-category with pullbacks and comma objects. Then the square on the right in
the previous display is exact.

Proof. First observe that if

A C

V

f //

k����h

ψ +3

exhibits k as a left Kan extension of h along f , and d : G→ A has a fully faithful left or right adjoint,
then for all s : C → V , the effect of pasting with ψd is obtained by applying the composite function

K(C, V )(k, s)
paste withψ−−−−−−−→ K(A, V )(h, sf)

(−)◦d−−−→ K(G,X)(hd, sfd)

which is a bijection since ψ is a left Kan extension and (−) ◦ d : K(A,X)→ K(G,X) is fully faithful.
Thus ψd exhibits k as a left Kan extension of hd along fd.
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Now suppose ψ exhibits k as a pointwise left Kan extension of h along f , and x : F → B. We
must show that the composite 2-cell

qe ↓ x q ↓ x F

B

C

V

A

DE

e2 // q1 //

x
��

g
��

k����h

��
p

//
e

��
p2

q2

&&

p1
�� q //

f //

pb

=

λ +3

φ +3

ψ +3

exhibits kgx as a left Kan extension of hpep2 along q2. Since φ is exact, the composite of ψ, φ and
λ is a left Kan extension. Since p1 is a split fibration (as part of a 2-sided discrete fibration D → F )
it is in particular an isofibration. Thus by Lemma 4.3.2 e2 has a fully faithful left or right adjoint,
and so the result follows by the observation made at the beginning of the proof. �

Note that an equivalence clearly satisfies the hypothesis on e in the above, and so this last result
includes the statement that exact squares are stable by precomposition with equivalences.

Proposition 4.3.4. Let K be a 2-category with comma objects and pullbacks.

(1) A pullback square as on the left

P B

CA

q //

g
��
//

f

��
p pb

P B

CA

q //

g
��
//

f

��
p ∼=

is exact when f is an opfibration or g is a fibration.
(2) If moreover K admits isocomma objects, then a bipullback square as on the right in the

previous display is exact when f is a bi-opfibration or g is a bi-fibration.

Proof. (1): Suppose that ψ exhibits k as a pointwise left Kan extension of h along f . We must
show that the composite on the left hand side of

P B

A C

V

f //

k����h

ψ +3

q //

g
��

p
��

pb

=

P f ↓ g B

CA

V

i // q1 //

g
��
//f��

p1
p

''

h �� �� k

λ +3pν +3

ψ +3

exhibits kg as a pointwise left Kan extension of hp along q when f is an opfibration or g is a fibration.
In the case where g is a fibration, one has by Lemma 4.3.1 that the above equation holds, in which ν
is the unit of an adjunction i a r coming from the fact that g is a fibration. Since hpν exhibits hp1 as
a left Kan extension of hp along i, and the composite of ψ and λ exhibits kg as a left Kan extension
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of fp1 along q1, the composite exhibits kg as a left Kan extension of hp along q. Thus when g is a
fibration ψp exhibits kg as a left Kan extension of hp along q.

For the general cases let x : D → B, consider the diagram on the left when f is an opfibration

f ↓ g P B

CA

V

Dq1 ↓ x q ↓ x

l // q //

g
��
//f$$

p1
p
��

h �� k��

p1ν′+3 pb

ψ +3

p3
��

q4 // q2 //

x
��

p2
��

q3

&&

λ2 +3pb

=

P f ↓ g B

CA

V

Dq ↓ x q1 ↓ x

i // q1 //

g
��
//f$$

p
p1
��

h �� k��

pν +3 λ +3

ψ +3

p2
��

q5 // q3 //

x
��

p3
��

q2

&&

λ3 +3pb

=

and the diagram on the right in the previous display when g is a fibration. To form these diagrams
one takes the comma objects λ2 and λ3, and then since ql = q1 and q1i = q, one induces q4 and q5

so that λ2q4 = λ3 and λ3q5 = λ2. The goal is to verify that the composite of λ2, the pullback square
and ψ exhibits kgx as a left Kan extension of hpp2. Note this composite 2-cell equals the composite
on the right in the previous display by definition.

Suppose that f is an opfibration. The composite on the left is a left Kan extension, since it is
by definition the composite of λ3, λ and ψ, ψ is a pointwise left Kan extension and by Proposition
4.2.2. By Theorem 3.5 of [30] p2 is a fibration. Thus by the case considered at the beginning of this
proof hp1ν

′p3 exhibits hpp2 as a left Kan extension of hp1p3 along q4. Thus the result in this case
follows by the cancellability of left Kan extensions.

Suppose that g is a fibration. Since p3 is a fibration by Theorem 3.5 of [30], by the case considered
at the beginning of this proof hpνp2 exhibits hp1p3 as a left Kan extension of hpp2 along q5. Since ψ
is a pointwise left Kan extension, the composite of λ3, λ and ψ exhibits kgx as a left Kan extension
of hp1p3 along q3. Thus the result in this case follows by the composability of left Kan extensions.

(2): By Lemma 4.3.3 it suffices to consider only the case where the bipullback is an isocomma
square. From here one establishes the analogue of Lemma 4.3.1 for bi-fibrations and bi-opfibrations,
and proceeds exactly as for (1), except in that all the pullbacks that arise in the discussion are
replaced by the corresponding isocomma objects. �

4.4. Colax idempotent 2-monads. Recall that a 2-monad (K, T ) is colax idempotent when
ηTT a µT , basic example being Pfin. For such 2-monads it turns out that all colax algebra morphisms
are exact.

Recall that when (K, T ) is colax idempotent, to give a pseudo T -algebra structure on A ∈ K, is
to give a right adjoint a to ηTA : A → TA in K. Moreover, given pseudo T -algebras (I, i) and (J, j),
and a morphism f : I → J in K, the unique 2-cell f satisfying

I TI TJ

JI

ηI // Tf //

j��
//

f

��1A i��

uI +3 f +3 =

I J TJ

JI

f // ηJ //

j��
//

f

��1I
=

1J ��

uJ +3

(7)
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where uI (resp. uJ) is the unit of ηI a i (resp. ηJ a j), provides the coherence datum for a colax
morphism (I, i)→ (J, j) of pseudo T -algebras.

Proposition 4.4.1. Let (K, T ) be a colax idempotent 2-monad on a 2-category K with comma
objects. Then any colax morphism of pseudo T -algebras is exact.

Proof. Given pseudo T -algebras (I, i) and (J, j) and f : I → J , we must show that the unique
2-cell f satisfying (7) is exact. Given ψ as below which exhibits h as a pointwise left Kan extension
of g along f , for any k : K → TJ , by (7) we have

I TI TJ

JI

ηI // Tf //

j��
//f��1A i��

uI +3 f +3

A
�� h��g

ψ +3

ηJf ↓ k Tf ↓ k K

��
p3

q3 // q1 //

k
��

p1
��

pb
λ1 +3

=
I J TJ

JI

f // ηJ //

j��
//f��1I

=
1J ��

uJ +3

A
�� h��g

ψ +3

ηJf ↓ k ηJ ↓ k K

��
p3

q4 // q2 //

k
����

p2
��

pb
λ2 +3

(8)

in which λ1 and λ2 are comma 2-cells. Our goal is to show that the composite of λ1, f and ψ on the
left hand side of (8) exhibits hjk as a left Kan extension of gip1 along q1. As the first projection maps
of comma squares, p1 and p2 are fibrations, and so by Proposition 4.3.4, the pullback squares in the
above diagrams are exact. Thus on the right hand side of (8) ψp3 exhibits hp2 as a left Kan extension
of gp3 along q4. Moreover as units of adjunctions are absolute pointwise left Kan extensions, guIp3

exhibits gip1 as a left Kan extension of gp3 along q3, and (hjλ2)(huJp2) exhibits hjk as a left Kan
extension of hp2 along q2. By the composability of left Kan extensions, the composite on the right
hand side of (8) is a left Kan extension, and so by the cancellability of left Kan extensions and (8),
the result follows. �

Example 4.4.2. Let I and J be small categories with finite products, and A be a cocomplete
cartesian closed category. If f : I → J is any functor and g : I → A is a finite product preserving
functor, then by Theorem 2.4.4(2) we recover the classical fact [22] that a pointwise left Kan extension
of g along f is finite product preserving. Moreover, one can weaken the hypotheses required of A
given a fixed f , asking only for enough colimits in A to enable computation of left Kan extensions
along f , and that just these colimits are preserved by functors of the form X × (−) for X ∈ A.

4.5. Exact colax monoidal functors. In this section we characterise the exact colax mor-
phisms of algebras for the 2-monads M, B and S of monoidal, braided monoidal and symmetric
monoidal categories respectively, on CAT. From these characterisations, one easily exhibits exam-
ples of colax morphisms of algebras which are not exact for these 2-monads, by contrast with the
previous section.

We now characterise exact colax monoidal functors, using the explicit reformulation of exactness
given by Lemma 4.1.5. Given a colax monoidal functor F : V → W , X ∈ V , Y1 and Y2 ∈ W , and
f : FX → Y1 ⊗ Y2, we denote by FactF (X, f, Y1, Y2) the following category. Its objects are 5-tuples
(g, Z1, Z2, h1, h2) providing a factorisation

FX
Fg−→ F (Z1 ⊗ Z2)

F 2−→ FZ1 ⊗ FZ2
h1⊗h2−−−→ Y1 ⊗ Y2
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of f . An arrow (g, Z1, Z2, h1, h2) → (g′, Z ′1, Z
′
2, h
′
1, h
′
2) is a pair (k1, k2) where k1 : Z1 → Z ′1 and

k2 : Z2 → Z ′2 such that (k1 ⊗ k2)g = g′, h1 = k1F (k1) and h2 = k2F (k2). Identities and compositions
are inherited from V .

Proposition 4.5.1. A colax monoidal functor F : V → W between monoidal categories is exact
as a colax morphism of pseudo M-algebras iff

(1) For any X ∈ V and f : FX → I in W, there is a unique g : X → I in V such that
f = F 0F (g).

(2) For any X ∈ V, Y1, Y2 ∈ W and f : FX → Y1 ⊗ Y2, the category FactF (X, f, Y1, Y2) defined
above is connected.

Proof. Applying the Lemma 4.1.5, the exactness of

MV MW

WV

MF // ⊗
��
//

F

��

⊗ F +3

says that for all n ∈ N, X ∈ V , Y1, ..., Yn ∈ W and f : FX →
⊗n

i=1 Yi, the category FactF (X, f, (Yi)i),
the objects of which are factorisations

FX
Fg−→ F

⊗
iXi

Fn−→
⊗

i FXi

⊗
i hi−−−→

⊗
i Yi

of f , is connected. Fixing n ∈ N, we denote by Pn the statement that for all X, (Yi)1≤i≤n and f the
category FactF (X, f, (Yi)i) is connected. Thus the exactness of (F, F ) as a colax morphism of pseudo
M-algebras is the statement (∀n ∈ N, Pn).

When n = 0 the sequence (Yi)i can only be the empty sequence () and we recall that the 0-ary
tensor product is by definition the tensor unit I. Thus the category FactF (X, (), f) is discrete, and
is just the set of g : X → I in V such that f = F 0F (g). Thus P0 is equivalent to (1). Since by
definition FactF (X, f, (Y1, Y2)) = FactF (X, f, Y1, Y2), P2 is just (2) and so we have shown (⇒). Note
also that P1 is always true because (1X , X, f) is an initial object of FactF (X, f, (Y )). Thus it suffices
to show that for n ≥ 2, P2 ∧ Pn ⇒ Pn+1.

By the coherence theorem for monoidal categories it suffices to consider the case where V and W
are strict. Let f : FX →

⊗n+1
i=1 Yi and define the categories E and B as

E = FactF (X, f, (Yi)i) B = FactF (X, f,
⊗n

i=1 Yi, Yn+1).

By P2, B is connected. For any object (g, (Xi)i, (hi)i) of E one has, by factoring the coherence F n+1

as in the commutative diagram

FX F
⊗n+1

i=1 Xi

⊗n+1
i=1 FXi

⊗n+1
i=1 Yi

F (
⊗n

i=1Xi)⊗ FXn+1

Fg //
Fn+1 //

⊗
i hi //
33

F 2

%%
Fn⊗id

99

an object (g, (
⊗n

i=1Xi, Xn+1), ((
⊗n

i=1 hi)F n, hn+1)) of B, this being the object map of a functor
Q : E → B.

Let (g1, (X•, Xn+1), (h•, hn+1)) be an object of B. Then by Pn one can factor h• as

FX•
Fg2−−→ F

⊗n
i=1Xi

F−→
⊗n

i=1 FXi

⊗
i hi−−−→

⊗n
i=1 Yi
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and so one has (g, (Xi)i, (hi)i) in E , where g = (g2 ⊗ 1Xn+1)g1. Moreover one has a morphism
(g2, 1Xn+1) : (g1, (X•, Xn+1), (h•, hn+1))→ Q(g, (Xi)i, (hi)i) in B. That is, for all B ∈ B, there exists
E ∈ E and B → QE in B. Thus since B is non-empty, E is non-empty.

Since B is connected, it suffices to show that if E1 and E2 are objects of E such that there exists
an arrow QE1 → QE2 of B, then there exists an undirected path E1 → ...← E2 in E . Denoting

E1 = (g1, (X1,i)i, (h1,i)i) E2 = (g2, (X2,i)i, (h2,i)i)

the data of QE1 → QE2 amounts to a and b as in

FX

F
⊗n+1

i=1 X1,i F (
⊗n

i=1X1,i)⊗ FX1,n+1⊗n+1
i=1 FX1,i⊗n+1

i=1 Yi⊗n+1
i=1 FX2,i

F (
⊗n

i=1X2,i)⊗ FX2,n+1F
⊗n+1

i=1 X2,i

Fg1

DD

F 2 //

Fn⊗id
$$

⊗
i h1,i$$

::⊗
i h2,i

::
Fn⊗id

//
F 2

��

Fg2

F (a⊗b)

��

Fa⊗Fb

��

such that

(a⊗ b)g1 = g2

⊗
i=1n h2,iF nF (a) =

⊗n
i=1 h1,iF n h2,n+1F (b) = h1,n+1

so that in particular, the above diagram commutes. Denoting by f2 the common morphism F
⊗n

i=1X1,i →⊗n
i=1 Yi, the category FactF (

⊗n
i=1X1,i, f2, (Yi)i) is connected by Pn. Thus one has m ∈ N and for

1 ≤ i ≤ n an undirected path

X1,i
δ1,i−−→ Z1,i ← ...→ Zm,i

δm+1,i←−−− X2,i

in V , morphisms cj : F
⊗n

i=1 X1,i → F
⊗n

i=1 Zj,i and kj,i : FZj,i → Yi of W assembling together to
form an undirected path

(1, (X1,i)i, h1,i)

(c1, (Z1,i), (k1,i)i) ... (cm, (Zm,i), (km,i)i)

(a, (X2,i)i, (h2,i)i)

(δ1,i)i ��
oo

(δ2,i)i (δm,i)i//
��
(δm+1,i)i

in FactF (
⊗n

i=1X1,i, f2, (Yi)i). Extending the definition of Zj,i, kj,i, and δj,i as follows

Zj,i =

{
X1,n+1 i = n+ 1
X2,i j = m+ 1, i ≤ n

kj,i =

{
h1,n+1 i = n+ 1
h2,i j = m+ 1, i ≤ n

δj,i =

 1X1,n+1 j ≤ m+ 1, i = n+ 1
1X2,i

j = m+ 2, i ≤ n
b j = m+ 2, i ≤ n+ 1

and defining

dj =

{
(c1 ⊗ 1X1,n+1)g1 j ≤ m
(a⊗ 1X1,n+1)g1 j = m+ 1
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the information at hand assembles together to form an undirected path

(g1, (X1,i)i, (h1,i)i)

(d1, (Z1,i), (k1,i)i) ... (dm, (Zm,i), (km,i)i)

(dm+1, (Zm+1,i), (km+1,i)i) (g2, (X2,i)i, (h2,i)i)

(δ1,i)i ��
oo

(δ2,i)i (δm,i)i//
��
(δm+1,i)i

(δm+2,i)i//

from E1 to E2 in E as required. �

Example 4.5.2. When V and W are cartesian monoidal any functor F : V → W is colax
monoidal in a unique way, with F being provided by the product obstruction maps. Condition 1
of Proposition 4.5.1 follows immediately in this case because the units of V and W are terminal.
Condition 2 of Proposition 4.5.1 follows in this case because

FX
F∇X−−−→ F (X ×X)

F 2−→ FX × FX fpr1×fpr2−−−−−−→ Y1 × Y2

is initial in FactF (X, f, Y1, Y2).

Example 4.5.3. Given a monoidal category V , taking F in Proposition 4.5.1 to be the unique
V → 1, condition 1 says exactly that V ’s unit must be terminal. Thus for any V whose unit is not
terminal, the unique (strict monoidal) functor V → 1 is not exact. In particular this applies to any
V of the form MA where A is non-empty.

Example 4.5.4. A colax monoidal functor F : 1→W is the same thing as a comonoid (C, ε, δ)
in W , with C being the effect of F on the unique object of 1, the counit ε : C → I being the unit
coherence F 0 and δ : C → C⊗C being the unique component of F 2. Condition 1 of Proposition 4.5.1
in this case says that the only morphism C → I in W is the counit ε of the comonoid. Condition 2
of Proposition 4.5.1 in this case says that any f : C → Y1 ⊗ Y2 factors as

C
δ−→ C ⊗ C h1⊗h2−−−→ Y1 ⊗ Y2

for unique morphisms h1 and h2. Taking W to be the category Vectk of vector spaces over a field k
with its usual tensor product (that classifies bilinear maps), the vector space k[x] of polynomials in
1-variable admits a simple well-known comonoid structure, with counit and comultiplication defined
on the basis {1, x, x2, ...} by

ε(xn) =

{
1 n = 0
0 n 6= 0

δ(xn) =
n∑
i=0

xi ⊗ xn−i.

Since there is more than one linear map k[x]→ k, any comonoid structure on k[x] will fail to satisfy
condition 1, giving more counterexamples to exactness for the 2-monad M. We leave to the reader
the routine exercise of showing that Condition 2 is also violated for the above comonoid structure on
k[x].

A complete understanding of when a symmetric (resp. braided) colax monoidal functor is exact
as a colax morphism of pseudo S-algebras (resp. B-algebras) is obtained from Proposition 4.5.1 and

Proposition 4.5.5. (1) A symmetric colax monoidal functor F : V → W between symmet-
ric monoidal categories is exact as a colax morphism of pseudo S-algebras iff it is exact as
a colax morphism of pseudo M-algebras.

(2) A braided colax monoidal functor F : V → W between braided monoidal categories is exact
as a colax morphism of pseudo B-algebras iff it is exact as a colax morphism of pseudo
M-algebras.
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Proof. We give the proof only in the symmetric case since the proof in the braided case is almost
identical. We denote by JV : MV → SV the identity on objects inclusion, which is the V-component
of a morphism of monads M → S. Our task is to verify that the square on the left, which is the
colax S-morphism coherence for F ,

SV SW

WV

SF // ⊗
��
//

F

��

⊗ F +3

MV MW

WV

MF // ⊗
��
//

F

��

⊗ FJV +3

is exact iff the square on the right is exact, because the square on the right is the colax M-morphism
coherence 2-cell for F . By Lemma 4.1.5, for X ∈ V , n ∈ N, Y1, ..., Yn ∈ W and f : FX →

⊗n
i=1 Yi,

it suffices to show that

FactFJV (X, f, (Yi)i) ' FactF (X, f, (Yi)i).

In the proof of Proposition 4.5.1 we unpacked the category FactFJV (X, f, (Yi)i) in explicit terms,
and we now proceed to the same for FactF (X, f, (Yi)i). An object of this last category is a 4-tuple
(g, (Zi)i, ρ, (hi)i) where Zi ∈ V , g : X →

⊗n
i=1 Zi, ρ ∈ Σn and hi : FZi → Yρi, providing a

factorisation

FX
Fg−→ F

n⊗
i=1

Zi
Fn−→

n⊗
i=1

FZi

⊗
(ρ,(hi)i)−−−−−−→

n⊗
i=1

Yi

of f . A morphism (g1, (Z1,i)i, ρ, (h1,i)i)→ (g2, (Z2,i)i, ρ, (h2,i)i) is a pair (ρ3, (δi)i) where ρ3 ∈ Σn and
δi : Z1,i → Z2,ρ3i such that

g2 =
⊗

(ρ3, (δi)i)g1 ρ2ρ3 = ρ1 h1,i = h2,ρ3iF (δi).

With this explicit description in hand it is clear that FactFJV (X, f, (Yi)i) may be identified as the full
subcategory of FactF (X, f, (Yi)i) consisting of objects of the form (g, (Zi)i, 1n, (hi)i). Since for any
(g, (Zi)i, ρ, (hi)i) one has an isomorphism

(ρ, (1Zi)i) : (g, (Zi)i, ρ, (hi)i) −→ (
⊗

(ρ, (1Zi)i)g, (Zρ−1i)i, 1n, (hρ−1i)i)

the inclusion of this subcategory is essentially surjective on objects. �

By Proposition 4.5.5 and Examples 4.5.2-4.5.4 one has the following examples and counterexam-
ples of exactness for the 2-monad S. For each of these there is an evident analogue for the 2-monad
B.

Examples 4.5.6. (1) Symmetric monoidal functors between cartesian monoidal categories
are exact as colax S-morphisms.

(2) When the unit of a symmetric V is not terminal, the unique V → 1 is not exact as a (strict)
S-algebra morphism.

(3) The comonoid k[x] in Vectk recalled in Example 4.5.4 is cocommutative, and a cocommuta-
tive comonoid in a symmetric monoidal category W may be identified as a symmetric colax
monoidal functor 1→W . Identifying k[x] in this way gives another example of a non-exact
colax morphism of pseudo S-algebras.
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4.6. Diexact naturality squares. It turns out that the naturality squares of the units and
multiplications of the 2-monads arising in many of the situations of interest for us, are exact in both
possible senses. To avoid confusion on this last point we make

Convention 4.6.1. A commutative square in a 2-category K with comma objects, as on the left

P B

CA

q //

g
��
//

f

��
p

P B

CA

q //

g
��
//

f

��
p

id +3
P A

CB

p //

f
��
//

g

��
q

P B

CA

q //

g
��
//

f

��
p ∼=

is said to be exact when the identity 2-cell second from the left is exact in the sense of Definition
2.4.1. In general this is different from saying that the commutative square second from the right
is exact, this being the exactness of the evident square in which the identity is oriented the other
way as id : gq → fp. We adopt the same convention for squares as on the right in the previous
display, which commute up to isomorphism when we wish to avoid naming the isomorphism under
consideration.

In this section we give general conditions under which diexact 2-natural transformations arise, this
applying in particular to the units and multiplications of M, S and B. An interesting consequence of
these considerations is that algebraic cocompleteness can be transferred along polynomial adjunctions
of 2-monads as we see in Proposition 4.6.7.

Definition 4.6.2. Let S and T : K → L be 2-functors, φ : S → T be a 2-natural transformation
and suppose that L has comma objects. Then φ is exact when for all f : A→ B in K, the square on
the left

SA SB

TBTA

Sf //

φB
��

//
Tf

��
φA

SA TA

TBSB

φA //

Tf
��

//
φB

��
Sf

is exact in L, and diexact when both the above squares are exact for all f .

Remark 4.6.3. Let K be a 2-category with comma objects. To say that the multiplication µT

for a 2-monad (K, T ) is an exact 2-natural transformation in the sense of Definition 4.6.2, is to say
that every free T -algebra morphism (that is any strict morphism of the form Tf) is exact in the sense
of Definition 2.4.3.

For a 2-functor T : K → L and an object X ∈ K, we denote by TX : K/X → L/TX the 2-functor
given on objects by applying T to morphisms into X. A local right adjoint [30] K → L is a 2-functor
T : K → L equipped with a left adjoint to TX for all X ∈ K. When K has a terminal object 1, to
exhibit T as a local right adjoint, it suffices to give a left adjoint to T1.

Definition 4.6.4. [30, 34] Suppose that K and L have comma objects and K has a terminal
object 1.

(1) An opfamilial 2-functor T : K → L is a local right adjoint equipped with T 1 : K → ΨT1-Algs

such that UΨT1T 1 = T1.
(2) A 2-natural transformation φ : S → T between opfamilial 2-functors is opfamilial when its

naturality squares are pullbacks, and when for all X ∈ K, α’s naturality square with respect
to the unique map tX : X → 1 is a morphism of split opfibrations (αX , α1) : StX → TtX .
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(3) An opfamilial 2-monad is a 2-monad whose underlying endo-2-functor, unit and multiplica-
tion are opfamilial.

By Proposition 4.3.3 and Lemma 4.3.5 of [34], opfamilial 2-functors and 2-natural transformations
are those 2-functors and 2-natural transformations which are compatible with the theory of opfibra-
tions. In particular, if f : A → B has the structure of a split opfibration in K, and S, T : K → L
and φ : S → T are opfamilial, then Sf and Tf have the structure of split opfibrations in L, and
the naturality square of φ at f gives a morphism (φA, φB) : Sf → Tf of split opfibrations. Dually
familial 2-functors are those that are compatible with the theory of fibrations. By Proposition 7.11
of [30] opfamilial 2-functors T such that T1 is groupoidal4 are also familial, and by Theorem 7.12 of
[30] such 2-functors are particularly well-behaved since they preserve groupoidal objects, and comma
objects up to equivalence.

The result of applying PCat : PolyCat → 2-CAT to

I E B Joo s p // t //

is opfamilial (resp. familial) when I is discrete, p has the structure of a split fibration (resp. split
opfibration), and t has the structure of a split opfibration (resp. split fibration), by [34] Theorem
4.4.5. Note also that the value at 1 of the associated polynomial functor is just t : B → J as an object
of Cat/J . Theorem 4.4.5 of [34] also provides sufficient conditions on a morphism of polynomial
monads in Cat to give rise to a familial or opfamilial 2-natural transformation. As an application,
one finds that the 2-monads M, S and B are familial and opfamilial, and Pfin is opfamilial but not
familial. See Section 5 of [34] for further discussion.

Proposition 4.6.5. Let S and T : A → B be 2-functors between finitely complete 2-categories
and φ : S → T be a 2-natural transformation between them. If

(1) T is opfamilial,
(2) T1 is groupoidal, and
(3) φ’s naturality squares are pullbacks

then φ’s naturality squares are also bipullbacks and φ is diexact.

Proof. By Theorem 6.2 of [30] T preserves isofibrations. For any X ∈ A the unique morphism
tX : X → 1 is an isofibration. Since the square on the left

SX S1

T1TX

StX //

φ1
��

//
TtX

��
φX

SX SY S1

T1TYTX

Sf // StY //

φ1
��

//
TtY

//
Tf

��
φX φY

��

is a pullback and TtX is an isofibration, this square is also a bipullback by [30] Example 3.9. For a
general morphism f : X → Y one uses the cancellability of bipullbacks (see [30] Proposition 3.10) in
the context of the diagram on the right in the previous display. Since T1 groupoidal, the component
φ1 : S1→ T1 is a bi-fibration and a bi-opfibration. Since bi-fibrations and bi-opfibrations are stable
under bipullback, and the square on the left in the previous display is a bipullback, any component
φX of φ is a bi-fibration and a bi-opfibration. Thus the naturality squares of φ are exact in both
possible senses (of Convention 4.6.1) by Proposition 4.3.4(2). �

4Recall that an object X of a 2-category is groupoidal (resp. discrete) when for all Y ∈ K, K(Y,X) is a groupoid
(resp. discrete).
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In many situations when we wish to apply Theorem 3.3.2, a further condition is satisfied, namely
that BT is a groupoid. In that case by the following corollary, µT is diexact. This applies in particular
when T = M, S or B.

Corollary 4.6.6. If (Cat/I, T ) is a polynomial 2-monad in which

(1) I is discrete,
(2) BT is a groupoid, and
(3) pT has the structure of a split fibration,

then µT is diexact.

We shall now see that Proposition 4.6.5 can also be used to transfer algebraic cocompleteness
across an adjunction of 2-monads in the following way. Recall that an adjunction of 2-monads as on
the left

F : (L, S) −→ (K, T ) SF ∗A
F lA−→ F ∗TA

F ∗a−−→ F ∗A

as recalled in Section 3.1, includes the data of an underlying adjunction F! a F ∗ : K → L, F l :
SF ∗ → F ∗T and F c : F!S → TF!, with F l and F c mates under F! a F ∗ and compatible with the
2-monad structures of S and T . Recall moreover that given a pseudo T -algebra (A, a), the pseudo
S-algebra F (A, a) has underlying object F ∗A, and action given by the composite on the right in
the previous display. Finally recall from Definition 2.3.1, that (A, a) is algebraically complete with
respect to f : I → J in K, when A admits all pointwise left extensions along f in K, and moreover
these are compatible with A’s pseudo algebra structure. Proposition 4.6.7 below, says that if the
adjunction of 2-monads F is nice enough, then for g : K → L in L, the algebraic cocompleteness of
A with respect to F!g implies the algebraic cocompleteness of FA with respect to g.

As recalled in Section 3.3, F : (Cat/I, S)→ (Cat/J, T ) is a polynomial adjunction of 2-monads
if it arises from a morphism of polynomial monads over Cat, that is to say, if it the result of applying
PCat : PolyCat → 2-CAT to

I ES BS I

J.BTETJ

oo sS pS // tS //

f
��
//

tT
//

pTsT
oo
��

f F2
��

F1
��

pb

Proposition 4.6.7. Let F : (Cat/I, S)→ (Cat/J, T ) be a polynomial adjunction of 2-monads,
A be a pseudo T -algebra, and g : X → Y be a morphism of Cat/I. Suppose that

(1) I and J are discrete,
(2) BT is a groupoid, and
(3) pT has the structure of a split fibration.

If A is algebraically cocomplete relative to F!g, then FA is algebraically cocomplete relative to g.

Proof. The 2-natural transformation F c : F!S → TF! is in the image of PCat and so its naturality
squares are pullbacks. By Theorem 4.4.5 of [33], T and F! = Σf are opfamilial, and thus so is TF!.
Moreover TF!1 is the result of applying T to F!1 = f ∈ Cat/J , which is discrete in Cat/J since I
is discrete. Since BT is a groupoid, T1 = tT ∈ Cat/J is groupoidal, thus T preserves groupoidal
objects, and so TF!1 is groupoidal. Thus by Proposition 4.6.5, the naturality squares of F c are
diexact bipullback squares.

To see that the underlying object F ∗A in Cat/I of FA admits all left Kan extensions along g,
we consider h : X → F ∗A and denote by h : F!X → A its mate under F! a F ∗. Then mateship gives
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a bijection between 2-cells φ and φ as in

X Y

F ∗A

g //

k����h

φ +3

F!X F!Y

A

F!g //

k����h

φ +3

and under this bijection, φ exhibits k as a left Kan extension of h along g iff φ exhibits k as a left
Kan extension of h along F!g. In our situation F! = Σf preserves comma objects, and so by the proof

of Theorem 7.4 of [31], φ is a pointwise left Kan extension whenever φ is. Thus the pointwise left
Kan extension of h along g is computed by taking the pointwise left Kan extension of h along F!g,
which exists by the hypothesis on A, and then taking its mate in the manner just described.

We must now verify that pointwise left Kan extensions into F ∗A constructed in this way are
compatible, in the sense of Definition 2.3.1, with FA’s pseudo S-algebra structure. Since F l and F c

are mates via F! a F ∗, it is straight forward to verify that

SX SY

SF ∗A

F ∗A

g //

k����h

F ∗(a)F lA
��

Sφ +3 TF!X TF!Y

TA

A

TF!g //

Tk����Th

a
��

F!SX

��
F cX

F!SY
F!Sg //

F cY��

Tφ+3

are mates via F! a F ∗. The composite on the right is a pointwise left Kan extension since A is
algebraically cocomplete and the naturality square for F c at the top is exact. Thus its mate, the
composite on the left, is a pointwise left Kan extension. �

Examples 4.6.8. As recalled in Section 3.3, and explained in [33], an operad T with set of
colours I determines an adjunction ArT : (Cat/I, T ) → (Cat,S) of 2-monads. Given a symmetric
monoidal category V , Ar∗TV ∈ Cat/I is, as an I-indexed family of categories, constant at V , and the
T -algebra structure of ArTV is obtained by using the symmetric monoidal structure of V . This was
described explicitly in Example 4.6 of [33], where ArTV was denoted as V•. By Propositions 2.3.3
and 4.6.7, if V is cocomplete and its tensor product preserves colimits in each variable, then V• is
algebraically cocomplete as a pseudo T -algebra, with respect to all functors over I between small
categories. The same is true more generally when ArT is replaced by any polynomial adjunction of
2-monads (Cat/I, T )→ (Cat,S) with I discrete, and thus applies also to the case of Cat-operads.
Replacing S by M or B, one obtains the analogous results for non-symmetric and braided operads.

5. Exact squares via codescent

In this section we explain why, in the context of Theorem 3.3.2, TG : TR → T S is exact. The
internal algebra classifiers TR and T S are computed as codescent objects of crossed internal categories
by [32]. We recall the crossed double categories of [32] and their codescent objects in Section 5.1.
The main result of this section is Theorem 5.1.4, which is the combinatorial reason for TG’s exactness.
This result is outside of any monad-theoretic context, and provides conditions on a pullback square
S of crossed double categories which ensure that the process of taking codescent sends S to an exact
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square. Then in Sections 5.6 and 5.7 we identify the monad-theoretic context to which Theorem
5.1.4 may be applied to give the proof of Theorem 3.3.2.

Sections 5.2-5.5 are concerned with the proof of Theorem 5.1.4. In Section 5.2 the notion of π0-
exact square of 2-categories is defined, and the conclusion of Theorem 5.1.4 is reformulated in such
terms. In Corollary 5.2.5 the property of π0-exactness is described more explicitly. This involves
a 2-coend of a certain type, and in Section 5.3, this 2-coend is replaced by a lax coend which is
easier to analyse. From this point, we become interested in how to compute such lax coends. At the
end of Section 5.3, the weight for lax coends is described in terms of a 2-categorical weight H, and
the relevant H-weighted colimits are then computed in Section 5.4. In Corollary 5.4.8 we obtain an
explicit formula for the lax coends of interest using these results. Corollaries 5.2.5 and 5.4.8 together
result in a combinatorial characterisation of π0-exact squares in Proposition 5.5.2, which generalises
Guitart’s explicit characterisation [9] of exact squares in Cat. This is then applied in the proof of
Theorem 5.1.4 in Section 5.5.

In Section 5.6 we describe TG as the result of taking codescent of a morphism of simplicial
T -algebras which we describe in Construction 5.6.1. Then in Section 5.7, we finally exhibit TG’s
exactness by applying Theorem 5.1.4 to this situation.

5.1. Codescent for crossed double categories. Denoting by δ : ∆ → Cat the inclusion
obtained by regarding non-empty ordinals [n] = {0 < ... < n} as categories 0 → ... → n, the
codescent object of a simplicial object X : ∆op → K in a 2-category K is defined to be the colimit
of X weighted by δ in the sense of Cat-enriched category theory [13]. For this type of colimit the
corresponding notion of cocone for X with vertex Z amounts to a pair (f0, f1), where f0 : X0 → Z
and f1 : f0d1 → f0d0 are in K, and satisfy f1s0 = 1f0 and (f1d0)(f1d2) = f1d1. As such, a codescent
object for X consists of an object CoDesc(X) of K and a cocone (q0, q1) with vertex CoDesc(X)
universal in the evident sense recalled in detail in Section 4.2 of [32].

Recall that a simplicial object X : ∆op → K in K is an internal category when for all n ∈ N the
square

Xn+2 Xn+1

XnXn+1

dn+2 //

d0
��

//
dn+1

��
d0

is a pullback. A category object X in Cat is commonly known as a double category. Following the
conventions of [32], in elementary terms such an X consists of (1) objects – which are the objects of
X0, (2) vertical arrows – which are the arrows of X0, (3) horizontal arrows – which are the objects
of X1, and (4) squares – which are the arrows of X1. In addition one has compositions of vertical
arrows, compositions of horizontal arrows, and both vertical and horizontal composition of squares.
Given categories X and Y internal to K, an internal functor between them is a morphism f : X → Y
in [∆op,K]. When K is Cat these are usually referred to as double functors involving assignations
at the level of objects, vertical arrows, horizontal arrows and squares, compatible in the evident way
with the compositions listed above.

We recall now the notions of crossed internal category and crossed internal functor from [32].
When K has comma objects and pullbacks, a crossed internal category is an internal category X :
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∆op → K, together with the structure of a split opfibration on d0 : X1 → X0 such that

X0 X1 X2

X0

s0 // oo d1

d20zz$$1
d0
��

are morphisms of split opfibrations over X0. When K = Cat such an X is called a crossed double
category. The main extra structure one has in a crossed double category X is that for each pair of
arrows (h, v) as on the left

x y

z

h //

v
��

x y

zw

h //

v
��
//

ρh,v

��
λh,v κh,v

one has distinguished squares, called chosen opcartesian squares as on the right satisfying a universal
property, coming from the fact that these squares are opcartesian arrows for the opfibration d0 :
X1 → X0, and these squares are closed under vertical and horizontal composition. A full unpacking
of this notion in the case K = Cat is given in Section 5.1 of [32].

Let X and Y be crossed internal categories in a finitely complete 2-category K. A crossed internal
functor f : X → Y is an internal functor such that the square

X1 X0

Y0Y1

d0 //

f0
��
//

d0

��
f1

is a morphism from d0 : X1 → X0 to d0 : Y1 → Y0 of split opfibrations. When K = Cat we shall say
that f is a crossed double functor. In elementary terms, crossed double functors are double functors
that preserve chosen opcartesian squares. We denote by CrIntCat(K) the category of crossed internal
categories in K and crossed internal functors between them.

In [32] the computation of codescent objects of crossed double categories was understood, and
we recall the relevant details now. For X a crossed double category, one computes CoDesc(X) by
first constructing a 2-category Cnr(X), and then applying π0 to the homs of this 2-category. The
2-category Cnr(X) is defined in elementary terms as follows. An object is an object of the double
category X. An arrow x→ y is a pair (f, g) where f is a vertical arrow and g is a horizontal arrow
as on the left in

x

z y

f
�� g //

x

a y

bc z

f
�� g //

h
��
//

ρg,h

��
λg,h κg,h

k
//

x

z1 y

yz2

f
�� g //

1y
��
//

k

��
α β

and is called a corner from x to y. Such an (f, g) is an identity in Cnr(X) when f and g are identities.
The composite of (f, g) : x→ y and (h, k) : y → z in Cnr(X) is defined to be (λg,hf, kρg,h) as in the
middle of the previous display. Given (f, g) and (h, k) : x→ y, a 2-cell (f, g)→ (h, k) in Cnr(X) is a
pair (α, β) where α is a vertical arrow and β is a square as on the right in the previous display, such
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that αf = h. Vertical composition of 2-cells in Cnr(X) is given in the evident manner by vertical
composition in X. The assignation X 7→ Cnr(X) is the object map of a functor as on the left in

Cnr : CrIntCat(Cat) −→ 2-Cat π0∗ : 2-Cat→ Cat

and the functor on the right applies π0 to the homs of a 2-category (leaving the objects fixed). By
Corollary 5.4.5 of [32] one has

Theorem 5.1.1. [32] The functor

CoDesc : CrIntCat(Cat) −→ Cat

factors as CoDesc = π0∗Cnr.

In Theorem 5.1.4, the central result of this section, conditions on a pullback square in CrIntCat(Cat)
are exhibited, which ensure that CoDesc sends it to an exact square in Cat. To understand what
pullbacks in CrIntCat(Cat) amount to, we have

Lemma 5.1.2. The functor

CrIntCat(Cat) −→ Set× Set× Set× Set X 7→ (X00, X01, X10, X11)

where X00, X01, X10 and X11 are the sets of objects, vertical arrows, horizontal arrows and squares
of X respectively; preserves and reflects limits.

Proof. As a sub-2-category of Cat(K), CrIntCat(K) has any limits that K has, and these are
computed componentwise, since split opfibrations and their morphisms are expressed internally to
K using limits. Thus the inclusion of categories CrIntCat(K) ↪→ [∆op,K] preserves and reflects
limits. When K = Cat, using the nerve functor one has an inclusion of [∆op,K] into the category
of bisimplicial sets, which preserves and reflects limits. Since for a double category X, the sets Xmn

participating in its associated bisimplicial set can be reconstructed as limits of X00, X01, X10 and
X11, the result follows. �

Definition 5.1.3. Let K be a 2-category with comma objects and pullbacks, X, Y : ∆op → K be
category objects, and f : X → Y be an internal functor.

(1) f is a discrete fibration when the square

X1 Y1

Y0X0

f1 //

d0
��
//

f0

��
d0

is a pullback.
(2) f is an objectwise opfibration when the morphism f0 : X0 → Y0 is an opfibration.

Theorem 5.1.4. Suppose that S is a pullback square

P B

CA

//

g
��
//

f

��
pb

in CrIntCat(Cat) in which g is a discrete fibration and f is an objectwise opfibration. Then
CoDesc(S) is exact.
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The proof of Theorem 5.1.4 occupies the rest of Section 5. Notice that the hypotheses on S
are a double categorical mixture of both types of hypotheses resulting in exact pullback squares in
Proposition 4.3.4(1).

These hypotheses on S are combinatorial. In elementary double categorical terms, the condition
that g be a discrete fibration amounts to the following two conditions. First, the underlying functor
between the underlying horizontal categories is a discrete fibration, that is to say, given b ∈ B and a
horizontal arrow h : c→ gb in C, there is a unique horizontal arrow k : b2 → b in B such that gk = h.
Second, one has a unique horizontal lifting property for squares. This says that for any square in C
as on the left in

c1 gb1

gb2c2

h1 //

gv2
��

//
h2

��
v1 α

b3 b1

b2b4

k1 //

v2
��
//

k2

��
v3 β

there is a unique square in B as on the right such that gβ = α. In particular in this last situation,
k1 and k2 are the unique lifts of h1 and h2. On the other hand, the hypothesis on f is about lifting
vertical arrows.

5.2. π0-exactness. As we saw in Lemma 4.1.4, one way to express combinatorially what exact-
ness amounts in Cat, is that a lax square as on the left

P B

CA

q //

g
��
//

f

��
p

φ +3
φa,b : (q ↓ b)×P (a ↓ p) −→ C(fa, gb)

(x, β : qx→ b, α : a→ px) 7→ gβ ◦ φx ◦ fα

is exact iff for all a ∈ A and b ∈ B, the functor π0 : Cat→ Set inverts the functor φa,b described on
the right in the previous display. In the context of Theorem 5.1.4, P , A, B and C are all of the form
CoDesc(X) for some crossed double category X.

Definition 5.2.1. A lax square S

P B

CA

q //

g
��
//

f

��
p

φ +3

in 2-Cat is π0-exact when π0∗(S) is an exact square in Cat.

Remark 5.2.2. By the way in which codescent objects of crossed double categories are computed,
as recalled in Theorem 5.1.1, to say that CoDesc(S) is exact in the context of Theorem 5.1.4, is to
say that Cnr(S) is π0-exact.

We shall achieve an explicit characterisation of π0-exact squares of 2-categories in Proposition 5.5.2
below, from which Theorem 5.1.4 will follow. In this section we obtain the analogue of Lemma 4.1.4
for π0-exact squares, in Corollary 5.2.5.

As mentioned in Section 4.1, Definition 4.1.2 of an exact square in Cat can be generalised to the
setting of V-categories, where V is nice enough (symmetric monoidal closed cocomplete), and further
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still to the setting of proarrow equipments in the sense of [35, 36] as in [16, 23]. That is, a lax
square in V-Cat as on the left in

P B

CA

q //

g
��
//

f

��
p

φ +3

P B

CA

B(q,1)
//
OO
C(1,g)

//
C(f,1)

A(1,p)

OO
φ̃ +3

is V-exact when the induced 2-cell φ̃ on the right in V-Mod is invertible. The cases of interest
for us is when V is either Set or Cat, in both cases with the cartesian monoidal structure, and in
these cases the bicategories V-Mod are denoted Prof (as above) and 2-Prof respectively. In the
case V = Cat this notion of exactness is, as we shall see, more restrictive than the π0-exactness of
Definition 5.2.1.

Given a 2-profunctor F : A → B between 2-categories, we define the profunctor π0∗F : π0∗A →
π0∗B by (π0∗F )(a, b) = π0(F (a, b)). Clearly given a 2-functor f : A→ B, one has

π0∗(B(f, 1)) = (π0∗B)(π0∗f, 1) π0∗(B(1, f)) = (π0∗B)(1, π0∗f).

With the obvious extension of π0∗ to 2-cells in 2-Prof we have extended the definition of π0∗ to the
level of modules, modulo verifying that this extension is compatible with module composition.

To establish this compatibility some remarks regarding 2-coends are in order. Given a 2-functor

T : Aop ×A→ B the 2-coend
∫ a∈A

T (a, a) is by definition [13] the weighted colimit col(HomAop , T ),
which is to say that it is defined by isomorphisms

B(

∫ a∈A
T (a, a), b) ∼= [A× Aop](HomAop , B(T, b))

2-natural in b. Thus a 2-dinatural transformation for T with vertex b is by definition a 2-natural
transformation φ : HomAop → B(T, b), which amounts to giving components φa : T (a, a)→ b satisfy-
ing the dinaturality condition familiar from the 1-dimensional notion of “dinatural transformation”,
together with a 2-dimensional condition which says that given α1, α2 : a2 → a1 and β : α1 → α2 in A,
one has φa1T (1, β) = φa2T (β, 1). For the sake of the following lemma, we denote by obj the functor
Cat → Set which sends a category to its set of objects, and by obj∗ : 2-Cat → Cat the 2-functor
which sends a 2-category X to its underlying category, which amounts to applying obj to the homs
of X.

Lemma 5.2.3. Suppose that T : Aop×A→ Cat is a 2-functor such that for all a, b ∈ A, T (a, b)
is in fact discrete. Then∫ a∈A

T (a, a) =

∫ a∈obj∗A

T (a, a) =

∫ a∈π0∗A
T (a, a).

Proof. Since Cat admits all cotensors, it suffices to show that the types of dinatural transforma-
tions defining each of these coends turn out to be the same in this case. A 1-dinatural transformation
for T is automatically a 2-dinatural transformation since T is discretely valued, and so one has the first
equality. For any 2-cell α : f → g in A, T (α, 1) and T (1, α) will be identities, and so T (f, 1) = T (g, 1)
and T (1, f) = T (1, g), whence the second equality. �

Note that the adjunction π0 a d is in fact a 2-adjunction, when Set is regarded as a locally
discrete 2-category. Hence given 2-profunctors F : A→ B and G : B → C one has canonical natural
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isomorphisms

π0∗(G ◦ F )(a, c) ∼=
∫ b∈B

π0G(b, c)× π0F (a, b)

∼=
∫ b∈π0∗B

π0G(b, c)× π0F (a, b)

= (π0∗G ◦ π0∗F )(a, c)

the first of which follows since π0 preserves 2-colimits and finite products, and the second follows by
Lemma 5.2.3. Thus we have shown

Corollary 5.2.4. The 2-functor π0∗ : 2-Cat→ Cat extends to a homomorphism of bicategories
π0∗ : 2-Prof→ Prof compatibly with the inclusions, that is, such that

2-Catco Catco

Prof2-Prof

πco
0∗ //

��
//

π0∗

��
=

2-Catop Catop

Prof2-Prof

πop
0∗ //

��
//

π0∗

��
=

Thus in particular π0∗ sends Cat-exact squares to exact squares in Cat, but more importantly,
one has the immediate

Corollary 5.2.5. A lax square

P B

CA

q //

g
��
//

f

��
p

φ +3

in 2-Cat is π0-exact iff for all a ∈ A and b ∈ B, the functor π0 : Cat→ Set inverts the functor

φ̃a,b :

∫ x∈P
B(qx, b)× A(a, px) −→ C(fa, gb)

defined by composition with the components of φ.

5.3. Lax coends. As with many other colimits in Cat, 2-coends such as that which describes
the domain of φ̃a,b, are difficult to compute in general. This is because it is possible that some
quotienting will occur at the level of objects, causing “new” composable sequences to arise in the
colimit, which then make it hard to keep track of all of the freely added composites which must then
also appear. However, since by Corollary 5.2.5 we are only concerned with the value of such 2-coends
“up to functors inverted by π0”, it turns out that for the purposes of characterising π0-exact squares,
it suffices to consider “lax coends” which turn out to be a lot easier to compute. In this section we
describe these lax coends, and explain why knowing them is sufficient for our purposes. Moreover we
compute the weight governing lax coends as a codescent object, which in Section 5.4 will enable us
to compute the lax coends of interest to us.

For the remainder of this section and the next, let

S : P op → Cat T : P → Cat

be 2-functors and denote by S×T the 2-functor whose effect on objects is given by (x, y) 7→ Sx×Ty.
For the sake of brevity denote by H : P × P op → Cat the 2-functor we denoted above as HomP op ,



46 MARK WEBER

whose effect on objects is (x, y) 7→ P (y, x). We wish to understand∫ x∈P
Sx× Tx = col(H,S × T )

up to a functor inverted by π0. By definition the weight H is an object of [P × P op,Cat]. We shall
regard this 2-category as the 2-category of strict algebras and strict morphisms of a 2-monad L to
be defined below, so that one can consider another weight H†L, where (−)†L is the left adjoint to the
inclusion JL : L-Algs → L-Algl.

The 2-monad L is essentially a special case of that described in Section 6.6 of [5]. Regard the
set ob(P ) of objects of P as a discrete 2-category, and then left extension and restriction along the
inclusion ob(P ) → P gives a 2-monad on [ob(P ), [P op,Cat]]. The 2-category of strict algebras and
strict maps may be identified with [P, [P op,Cat]], and lax morphisms F → G may be identified
with lax natural transformations F → G. Our 2-monad L is exactly this, except that we regard the
underlying 2-category and the 2-category of strict algebras and strict maps as

[ob(P )× P op,Cat] [P × P op,Cat]

respectively. In these terms lax morphisms F → G may be identified with lax natural transformations
F → G which are strictly natural in the second variable.

Explicitly L is given on objects by

LX(x, y) =
∐

z∈ob(P )

X(z, y)× P (z, x)

and following [5] one may exhibit the rest of the monad structure. Since coproducts in Cat commute
with connected limits and Cat is cartesian closed, the above formula exhibits L as connected limit
preserving. Since in Cat coproducts of pullback squares are pullbacks, and squares of the form

A×B A×D

C ×DC ×B

1A×g //

f×1D
��

//
1C×g

��
f×1B

are pullbacks, the unit and multiplication of L may be exhibited as cartesian. Thus L is a cartesian
2-monad. Moreover note that since [P ×P op,Cat] is cocomplete, the codescent objects necessary for

the description of (−)†L exist and we can make

Definition 5.3.1. Let K be a 2-category and F : P op×P → K be a 2-functor. Then the colimit
of F weighted by H†L is called the lax coend of F .

The counit of the adjunction (−)†L a JL gives us a 2-natural transformation E : H†L → H. Since
computing weighted colimits is functorial in the weight, one has a “comparison functor”

col(E, S × T ) : col(H†L, S × T ) −→ col(H,S × T )

between the lax and strict coends of interest. The unit of (−)†L a JL gives us N : H → H†L in L-Algl,
and by [21] Lemma 2.5 one has an adjunction E a N in L-Algl with identity counit. As we shall
now see, the existence of this adjunction at the level of weights enables us to verify that the above
comparison between lax and strict coends is inverted by π0.
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Proposition 5.3.2. Let A be a small 2-category, and F : A → Cat and I : Aop → Cat be
2-functors. Then one has isomorphisms

π0col(I, F ) ∼= col(I, π0F ) ∼= col(dπ0I, π0F )

2-natural in I and F .

Proof. The first isomorphism follows since π0 a d is a 2-adjunction when one regards Set as a
locally discrete 2-category. Consistent with our notation, we write d∗Set for the category of Set so
regarded. For the second isomorphism we have the following sequence of natural isomorphisms

(d∗Set)(col(dπ0I, π0F ), X) ∼= [Aop,Cat](dπ0I, (d∗Set)(π0F,X))
∼= [Aop,Cat](dπ0I, d(Set(π0F,X)))
∼= [Aop,Set](π0I,Set(π0F,X))
∼= [Aop,Cat](I, d(Set(π0F,X)))
∼= [Aop,Cat](I, (d∗Set)(π0F,X))
∼= (d∗Set)(col(I, π0F ), X)

coming from the definitions of weighted colimit and of d∗, π0 a d and the 2-fully faithfulness of d. �

Since the 2-functor π0◦(−) : [P×P op,Cat]→ [P×P op,Set] given by composition with π0 factors
through the inclusion JL, the existence of the adjunction E a N in L-Algl ensures that π0◦(−) inverts
E. Since the composite isomorphism of Proposition 5.3.2 is natural in the weight, π0col(E, S × T ) is
an isomorphism since dπ0E is. Thus we have proved

Corollary 5.3.3. The functor col(E, S × T ) is inverted by π0.

and so for the purposes of characterising π0-exact squares, lax coends are as good as strict ones. The
remainder of this section and the next is devoted to the computation of col(H†L, S × T ), which is
ultimately achieved in Corollary 5.4.8 below.

As is well-known [6, 18, 32], the weight H†L can be computed as the codescent object of RLH,
where RLH is the simplicial object in [P × P op,Cat] whose codescent-relevant parts are

L3H L2H LHLηLH
oo

µLH //

Lh
//

µLLH //
LµLH

//

L2h

//

(9)

where h : LH → H is the strict L-algebra action for H : P ×P op → Cat, which in this case encodes
its functoriality data in the first variable.

Let us unpack (9) in more elementary terms. For x, y ∈ P denote by sn(y, x) the set of sequences
of objects of P of length (n+ 2) starting from y and finishing at x. We denote a typical z ∈ sn(y, x)
as (z1, ..., zn) and let z0 = y and zn+1 = x. By the definitions of L and H, for x, y ∈ P one has

LnH(x, y) =
∐

z∈sn(y,x)

n∏
i=0

P (zi, zi+1).

Thus one has following elementary description of the category LnH(x, y). An object is a functor
p : [n+ 1]→ P such that p0 = y and p(n+ 1) = x. Such a p is clearly a path of length (n+ 1) from y
to x, we denote by pi : p(i−1)→ pi the i-th arrow in this path, and when convenient we shall denote
p also as the (n + 1)-tuple (p1, ..., pn+1). A morphism φ : p → r in LnH(x, y) may be identified as
an icon p → r in the sense of [20]. Recall that an icon is a lax natural transformation whose 1-cell
components are identities, and so to give such a φ is to give 2-cells φi : pi → ri for 1 ≤ i ≤ n+ 1.
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In these terms the components of the morphisms appearing in (9) are given on objects as follows.
The effect of µLH,x,y and Lhx,y on a path (p1, p2, p3) of length 3 is (p1, p3p2) and (p2p1, p3) respec-

tively, and LηLH,x,y(p1, p2) = (p1, 1p1, p2). The effect of µLLH,x,y, Lµ
L
H,x,y and L2hx,y on (p1, p2, p3, p4) is

(p1, p2, p4p3), (p1, p3p2, p4) and (p2p1, p3, p4) respectively.
Since L is a cartesian 2-monad (9) is a category object (see for instance Proposition 4.4.1 of [32]).

However at this generality there is no reason why (9) should be a crossed internal category. However
despite the fact that the methods of [32] do not apply here, we are nevertheless able to compute this
codescent object. We do this by exhibiting a codescent cocone directly.

Construction 5.3.4. We now describe a 2-functor

H : P × P op −→ 2-Cat.

For x, y ∈ P the 2-category H(x, y) is defined as follows. An object is an object of LH(x, y), that is
to say, a path of length 2 in P from y to x. A morphism p→ r is a triple (f, f1, f2) where f : p1→ r1,
f1 : fp1 → r1 and f2 : r2f → p2 as in

y

p1

x.

r1

p1 55 p2

))
55

r2))r1

f

��
f1�� f2��

A 2-cell (f, f1, f2) → (g, g1, g2) is a 2-cell α : f → g in P such that g1(αp1) = f1 and (r2α)f2 = g2.
The 2-categorical compositions for H(x, y) are inherited in the evident way from those of P , and this
construction is 2-functorial in x and y.

The vertex of the codescent cocone we are in the process of describing is π0∗H. We will describe the
rest of the data as the effect of post-composition with π0∗ on q0 : d∗LH → H and q1 : q0µ

L
H → q0Lh,

noting that π0∗d∗ is the identity. Now (q0, q1) will almost be a codescent cocone in [P ×P op,2-Cat],
except that the components of q1 are lax natural transformations. To clarify what sort of entity q1

really is, some preliminary remarks are in order.
For 2-categories A and B, [A,B] denotes the 2-category of 2-functors from A to B, 2-natural

transformations and modifications, and [A,B]l denotes the 2-category of 2-functors from A to B, lax
natural transformations and modifications. Note that the assignation (A,B) 7→ [A,B]l is 2-functorial
in A and B, in fact this is part of a well-known closed structure on 2-Cat. Given a small 2-category
A and 2-functors X and Y : A→ 2-Cat, we define the 2-category

[A,2-Cat](X, Y )l =

∫
a∈A

[Xa, Y a]l

in which the end on the right hand side is taken in the 2-Cat-enriched sense, where the tensor
product on 2-Cat is taken to be cartesian product. An object of this 2-category consists of 2-
functors Fa : Xa → Y a for each a ∈ A, 2-naturally in a. A morphism φ : F → G consists of lax
natural transformations φa : Fa → Ga, 2-naturally in a. This naturality is in the evident sense,
given that lax natural transformations can be horizontally composed with 2-functors, strict 2-natural
transformations and modifications thereof. We call such a φ a lax modification. Composition with
π0∗ gives a 2-functor

π0∗ ◦ (−) : [A,2-Cat](X, Y )l −→ [A,Cat](π0∗X, π0∗Y )

whose codomain is locally discrete. In particular π0∗ ◦ (−) sends lax modifications to modifications.
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Construction 5.3.5. The 2-natural transformation on the left

q0 : d∗LH −→ H q1 : q0µ
L
H → q0Lh

and the lax modification on the right will now be described. For x, y ∈ P define the 2-functor
q0,x,y : d∗LH(x, y) → H(x, y) to be the identity on objects, and for (f1, f2) : (p1, p2) → (r1, r2) in
LH(x, y), define q0,x,y(f1, f2) = (1z, f1, f2), where z = p1 = r1. The 2-functors q0,x,y are easily seen
to be be 2-natural in x and y. The lax modification q1 is defined as follows. For x, y ∈ P and
p = (p1, p2, p3) in L2H(x, y), we take the corresponding 1-cell component (q1,x,y)p to be (p2, id, id) :
(p1, p3p2) → (p2p1, p3). The lax naturality 2-cell (q1,x,y)f with respect to f : p → r in L2H(x, y) is
given by

(p1, p3p2) (r1, r3r2)

(r2r1, r3)(p2p1, p3)

(1z1 ,f1,f3·f2)
//

(r2,id,id)
��

//
(1z2 ,f2·f1,f3)

��
(p2,id,id)

f2 +3

where z1 = p1 = r1 and z2 = p2 = r2, and “·” denotes horizontal composition of 2-cells in P . The
2-naturality of the q1,x,y in x and y follows easily from the 2-category structure of P .

Note also that in the context of Construction 5.3.5 the equations

q1(LηLH) = id (q1L
2h)(q1µ

L
LH) = q1Lµ

L
H

also follow easily from the 2-category structure of P . Thus (π0∗q0, π0∗q1) is a cocone for the simplicial
object RLH.

Proposition 5.3.6. (π0∗q0, π0∗q1) is a codescent cocone which exhibits

H†L = π0∗H.

Proof. For x, y ∈ P it suffices to show that (π0∗q0,x,y, π0∗q1,x,y) is a codescent cocone in Cat.
For any 2-category A, let us denote by LCD(A) the set of pairs (φ0, φ1) where φ0 : d∗LH(x, y)→ A
is a 2-functor and φ1 : φ0µ

L
H → φ0Lhx,y is a lax natural transformation, such that

φ1Lη
L
H,x,y = id (φ1L

2hx,y)(φ1µ
L
LH,x,y) = φ1Lµ

L
H,x,y.

Precomposition with (q0,x,y, q1,x,y) gives a function

(−) ◦ (q0,x,y, q1,x,y) : ob[H(x, y), A] −→ LCD(A).

When A is locally discrete, that is, of the form d∗B for some category B, LCD(A) is in bijection with
the set of cocones for (RLH)(x, y) with vertex B, and under this correspondence, composition with
(q0,x,y, q1,x,y) is identified with composition with (π0∗q0,x,y, π0∗q1,x,y). Thus it suffices to show that
(−) ◦ (q0,x,y, q1,x,y) is bijective when A is locally discrete. So we suppose that we are given (φ0, φ1)

as above with A locally discrete, and we must exhibit φ : H(x, y)→ A unique such that φq0,x,y = φ0

and φq1,x,y = φ1.

The definition φ(p1, p2) = φ0(p1, p2) of φ on objects is forced by the equation φq0,x,y = φ0 on
objects. Note that any arrow (f, f1, f2) : (p1, p2)→ (r1, r2) in H(x, y) can be factored in the following
way

(p1, p2)
(1p1,id,f2)−−−−−−→ (p1, r2f)

(f,id,id)−−−−→ (fp1, r2)
(1r1,f1,id)−−−−−−→ (r1, r2)

and so the equations φq0,x,y = φ0 and φq1,x,y = φ1 force the definition

φ(f, f1, f2) = φ0(f1, id)(φ1)(p1,f,r2)φ0(id, f2)
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of φ on 1-cells. Any 2-cell α : (f, f1, f2)→ (g, g1, g2) in H(x, y) can be factored as

(p1, p2) (p1, r2f) (fp1, r2)

(r1, r2)(gp1, r2)(p1, r2g)

(1p1,id,f2)
//

(f,id,id)
// (1r1,f1,id)

!!
//

(1r1,g1,id)
//

(g,id,id)
--(1p1,id,g2)

(1p1,id,r2α)
��

(1r1,αp1,id)
��

α��= =

and we observe that the lax square in the middle of this last diagram is just the lax naturality 2-cell
(q1,x,y)(id,α,id). Thus the equation φq1,x,y = φ1 forces us to define φ(α) to be the composite 2-cell

φ0(p1, p2) φ0(p1, r2f) φ0(fp1, r2)

φ0(r1, r2)φ0(gp1, r2)φ0(p1, r2g)

φ0(id,f2)
//

(φ1)(p1,f,r2)//

//
φ0(g1,id)

//
(φ1)(p1,g,r2)

φ0(id,r2α)
��

αp1,id)
��

(φ1)(id,α,id)��

in X, which since X is locally discrete, is an identity. It suffices to show that with these assignations,
φ respects the composition of 1-cells.

Given the 3-fold factorisation of arrows of H(x, y) described above, it suffices to verify that φ is
functorial with respect to morphisms of the form

(i) (f, id, id) (ii) (1, f1, id) (iii) (1, id, f2)

separately, and moreover given (f, f1, f2) : p→ r and (g, g1, g2) : r → s in H(x, y), that

(iv) φ(1r1, idr1 , g2)φ(1r1, f1, idr2) = φ(1r1, f1, idr2)φ(1r1, idr1 , g2)
(v) φ(1r1, idfp1 , g2)φ(f, idfp1 , idr2f ) = φ(f, idfp1 , idr2gf )φ(1p1, idp1 , g2f)

(vi) φ(g, idgr1 , ids2g)φ(1r1 , f1, ids2g) = φ(1s1, gf1, ids2)φ(g, idgfp1 , ids2g)

so that φ respects how these 3 classes of morphisms interact.
Functoriality in the case (i) follows by the lax naturality axioms φ1, and in the cases (ii) and (iii)

by the functoriality of φ0. The calculation

φ(1, id, g2)φ(1, f1, id) = φ0(id, g2)φ0(f1, id) = φ0(f1, g2)
= φ0(f1, id)φ0(id, g2) = φ(1, f1, id)φ(1, id, g2)

establishes (iv). As for (v) and (vi) the lax naturality 2-cells (φ1)(g2,id,id) and (φ1)(id,id,f1) give 2-cells
between opposing sides of these equations, which since X is locally discrete, are identities. �

5.4. Lax wedges. The formula H†L = π0∗H of Proposition 5.3.6 tells us that we know how to
compute lax coends if we know how to compute the corresponding 2-categorical colimit weighted by
H, by the following result.

Proposition 5.4.1. Let A be a 2-category, and I : Aop → 2-Cat and F : A→ Cat be 2-functors.
Then col(π0∗I, F ) = π0∗col(I, d∗F ).

Proof. One has natural isomorphisms

Cat(col(π0∗I, F ), X) ∼= [Aop,Cat](π0∗I,Cat(F,X))
∼= [Aop,2-Cat](I, d∗Cat(F,X))
∼= [Aop,2-Cat](I,2-Cat(d∗F, d∗X))
∼= 2-Cat(col(I, d∗F ), d∗X)
∼= Cat(π0∗col(I, d∗F ), X)
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because of the definition of weighted colimit, the adjunction π0∗ a d∗, and since d∗ is 2-fully faithful.
�

Thus the problem of understanding the lax coend col(H†L, S×T ) comes down to that of understanding
the weighted colimit col(H, d∗S × d∗T ), which is a colimit in the setting of 2-Cat-enriched category
theory. We now turn to an analysis of these.

By definition an H-cocone for F : P op×P → 2-Cat with vertex X ∈ 2-Cat consists of 2-functors

φx,y : H(x, y) −→ 2-Cat(F (x, y), X)

which are 2-natural in x and y. In this section we shall give a minimalistic combinatorial description
of the data contained in an H-cocone, and using this, exhibit the universal such in the case where
F = d∗S × d∗T .

Definition 5.4.2. A lax wedge ψ for F with vertex X consists of

• ∀x ∈ P , a 2-functor ψx : F (x, x)→ X.
• ∀f : x→ y ∈ P , a 2-natural transformation ψf : ψxF (f, 1)→ ψyF (1, f).
• ∀ 2-cells α : f → g in P , a modification

ψxF (f, 1) ψxF (g, 1)

ψyF (1, g)ψyF (1, f)

ψxF (α,id)
//

ψg
��

//
ψyF (id,α)

��
ψf

ψα +3

subject to the unit, 1-cell composition, 2-cell vertical composition and 2-cell horizonal composition
axioms. The unit axioms say that ∀x ∈ P , ψ1x = 1ψx , and ∀f : x → y ∈ P , ψidf = idψf . The 1-cell
composition axiom says that given f : x→ y and g : y → z in P , ψgf = (ψgF (1, f))(ψfF (g, 1)). The
2-cell vertical composition axiom says that given α and β in P as on the left in

x y

f

��
g //

h

FF

α��

β��

ψxF (f, 1) ψxF (g, 1) ψxF (h, 1)

ψyF (1, h)ψyF (1, g)ψyF (1, f)

ψxF (α,id)
//

ψxF (β,id)
//

ψh��
//

ψyF (id,β)
//

ψyF (id,α)

��
ψf ψg

��
ψα +3

ψβ +3

the composite on the right in the previous display equals ψβα. The 2-cell horizontal composition
axiom says that given α and β in P as on the left in

x y z

f
!!

g

  

h

==

k

>>α�� β��

ψxF (gf, 1) ψyF (g, f) ψzF (1, gf)

ψzF (1, kh)ψyF (k, h)ψxF (kh, 1)

ψfF (g,1)
//

ψgF (1,f)
//

ψzF (1,β·α)
��

//
ψkF (1,h)

//
ψhF (k,1)

��
ψxF (β·α,id) ψyF (β,α)

��
ψαF (β,id)�� ψβF (id,α)��

the composite on the right in the previous display equals ψβ·α.

Let φ : H → 2-Cat(F,X) be an H-cocone as above. For x ∈ P , (1x, 1x) is a path in P of length
2 from x to itself, and thus an object of H(x, x). We define φx = φx,x(1x, 1x) so that by definition,

φx is a 2-functor F (x, x)→ X. Let f : x→ y be in P . Since

(1x, f) = H(f, 1x)(1x, 1x) (f, 1y) = H(1y, f)(1y, 1y)
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by the naturality of φ one has

φy,x(1x, f) = φxF (f, 1) φy,x(f, 1y) = φyF (1, f).

Moreover one has a morphism (f, idf , idf ) : (1x, f) → (f, 1y) of H(y, x), and so one can define

φf = φy,x(f, idf , idf ), so that by definition φf is a 2-natural transformation φxF (f, 1) → φyF (1, f).
Let α : f → g be a 2-cell in P . Since

(1x, id1x , α) = H(α, id)(1x,1x) (1y, α, id1y) = H(id, α)(1y ,1y)

by the naturality of φ one has

φy,x(1x, id1x , α) = φxF (α, id) φy,x(1y, α, id1y) = φyF (id, α).

Moreover one has a 2-cell as on the left

(1x, f) (1x, g)

(g, 1y)(f, 1y)

(1x,id,α)
//

(g,id,id)
��

//
(1y ,α,id)

��
(f,id,id) α +3

φxF (f, 1) φxF (g, 1)

φyF (1, g)φyF (1, f)

φxF (α,id)
//

φg��
//

φyF (id,α)

��φf
φα +3

inH(y, x). We define φα to be the effect of φy,x on this 2-cell, so that by definition φα is a modification
as indicated on the right in the previous display. Thus from an H-cocone φ we have defined the data
of a lax wedge φ.

Lemma 5.4.3. In the manner just described, every H-cocone φ for F with vertex X determines
a lax wedge φ for F with vertex X.

Proof. We must verify the lax wedge axioms for φ. The unit axioms follow from the 2-
functoriality of the components of φ. Given f : x→ y and g : y → z in P , note that (gf, idgf , idgf ) =
(g, idgf , idg)(f, idf , idgf ) and

(f, idf , idgf ) = H(g, 1x)(f, idf , idf ) (g, idgf , idg) = H(1z, f)(g, idg, idg)

and so the 1-cell axiom for φ follows from the naturality of φ and the functoriality of φ’s components.
Given f , g and h : x→ y, and α : f → g and β : g → h in P , one has

(1x, f) (1x, h)

(h, 1y)(f, 1y)

(1x,id,βα)
//

(h,id,id)
��

//
(1y ,βα,id)

��
(f,id,id)

βα +3 =

(1x, f) (1x, g) (1x, h)

(h, 1y)(g, 1y)(f, 1y)

(1x,id,α)
//

(1x,id,β)
//

(h,id,id)
��

//
(1y ,β,id)

//
(1y ,α,id)

��
(f,id,id) (g,id,id)

��
α +3 β +3

in H(y, x), and so the 2-cell vertical composition axiom for φ follows from the 2-naturality of φ and
the 2-functoriality of φ’s components. Given α and β as on the left

x y z

f
!!

g

  

h

==

k

>>α�� β��

(1x, gf) (1x, kh)

(kh, 1z)(gf, 1z)

(1x,id,β·α)
//

(kh,id,id)
��

//
(1z ,β·α,id)

��
(gf,id,id)

β·α +3
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in P , the 2-cell in H(y, x) indicated on the right in the previous display is, by a straight forward
calculation, the following horizontal composite

(1y, g) (1y, k)

(k, 1z)(g, 1z)

(1y ,id,β)
//

(k,id,id)
��

//
(1z ,β,id)

��
(g,id,id)

β +3

(1x, f) (1x, h)

(h, 1y)(f, 1y)

(1x,id,α)
//

(h,id,id)
��

//
(1y ,α,id)

��
(f,id,id) α +3H(1z, h) H(g, 1x)·

and so by the 2-naturality of φ and the 2-functoriality of φ’s components, φβ·α is the horizontal
composite embodied in the solid parts of

φxF (gf, 1) φyF (g, f) φzF (1, gf)

φzF (1, gh)

φzF (1, kh)φyF (k, h)φxF (kh, 1)

φxF (gh, 1) φyF (g, h)

φfF (g,1)
//

φgF (1,f)
//

φzF (1,gα)��

φzF (1,βh)��
//

φkF (1,h)

//
φhF (k,1)

��φxF (βh,id)

��φxF (gα,id) �� φyF (g,α)
φgF (1,h)

//

φyF (β,h) ��

//
φhF (g,1)

φαF (g,1)��

φβF (1,h)��=

=

and the naturality of φ provides the remaining commutative squares. The 2-cell horizontal composi-
tion axiom for φ follows since the above diagram in its entirety is the required decomposition of φβ·α
in terms of φα and φβ. �

Lemma 5.4.4. The assignation φ 7→ φ given by Lemma 5.4.3 gives a bijection between the set of
H-cocones for F with vertex X, and the set of lax wedges for F with vertex X, naturally in F and
X.

Proof. The given assignation is clearly compatible with precomposition by 2-natural transfor-
mations F ′ → F and with postcomposition by 2-functors X → X ′, and so is natural in the required
sense. Given (p1, p2) ∈ H(x, y), we have (p1, p2) = H(p2, p1)(1p1, 1p1), and so by the naturality of φ
we have

φx,y(p1, p2) = φp1F (p2, p1). (10)

The 3-way factorisation of (f, f1, f2) : (p1, p2) → (r1, r2) described in the proof of Proposition 5.3.6
can be written as

(f, f1, f2) = (H(id, f1)(1r1,1r1))(H(r2, p1)(f, idf , idf ))(H(f2, id)(1p1,1p1))

and so by the naturality of φ and the functoriality of φ’s components one has

φx,y(f, f1, f2) = (φr1F (id, f1))(φfF (r2, p1))(φp1F (f2, id)). (11)

Given a 2-cell α : (f, f1, f2)→ (g, g1, g2) in H(x, y), its corresponding decomposition, also described
in the proof of Proposition 5.3.6, can be written as

H(p2, p1)(1p1, 1p1) H(r2f, p1)(1p1, 1p1) H(r2, fp1)(1r1, 1r1)

H(r2, r1)(1r1, 1r1)H(r2, gp1)(1r1, 1r1)H(r2g, p1)(1p1, 1p1)

// //

////
rr rr

H(f2,id)(1p1,1p1) H(r2,p1)(f,idf ,idf )

H(id,g1)(1r1,1r1)H(r2,p1)(g,idg ,idg)

H(r2,p1)H(α,id)(1p1,1p1) H(r2,p1)H(id,α)(1r1,1r1)H(r2,p1)α��

and so by the 2-naturality of φ and the 2-functoriality of φ’s components one has

φx,y(α) = (φr1F (id, g1))(φαF (r2, p1))(φp1F (f2, id)). (12)
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Thus by (10)-(12) φ 7→ φ is injective. To show that φ 7→ φ is surjective it suffices to show that given
the lax wedge φ, and taking (10)-(12) as a definition of φ, that the components φx,y are 2-functors

and are 2-natural in x and y, and moreover that the lax wedge corresponding to φ is φ.
This last fact follows by applying (10) to the cases (p1, p2) = (1x, 1x), (11) to the cases (f, f1, f2) =

(f, idf , idf ), and (12) to the cases α : (f, α, idf )→ (g, idg, α) where α : f → g is a 2-cell of P . Two-
naturality in x and y is obvious from the definitions (10)-(12). The unit axioms of 2-functoriality
are exactly the unit axioms for φ. That the φx,y respect horizontal composition of 1-cells, vertical
composition of 2-cells and horizontal composition of 2-cells, is easily seen to be a consequence of
the definitions and the 1-cell composition axiom, the 2-cell vertical composition axiom and the 2-
cell horizontal composition axiom respectively, by straight forward calculations that are left to the
reader. �

Remark 5.4.5. For F : P op × P → Cat and X ∈ Cat, an H†L-cocone for F with vertex X is
the same thing as a lax wedge for d∗F with vertex d∗X, by Propositions 5.3.6, 5.4.1 and 5.4.4, and
the adjunction π0∗ a d∗. Thus such an H†L-cocone amounts to the following data:

• ∀x ∈ P , a functor ψx : F (x, x)→ X.
• ∀f : x→ y ∈ P , a natural transformation ψf : ψxF (f, 1)→ ψyF (1, f).

such that

(1) ∀ 2-cells α : f → g in P , (ψyF (id, α))ψf = ψg(ψxF (α, id)).
(2) ∀x ∈ P , ψ1x = 1ψx .
(3) Given f : x→ y and g : y → z in P , ψgf = (ψgF (1, f))(ψfF (g, 1)).

We turn now to the task of exhibiting a universal lax wedge for d∗S × d∗T given 2-functors
S : P op → Cat and T : P → Cat. We begin by describing its vertex.

To S we can associate the 2-category 1\\S which is described as follows. An object is a pair
(x, y) where x ∈ P and y ∈ Sx. An arrow (x1, y1) → (x2, y2) is a pair (f1, f2) where f1 : x1 → x2

and f2 : y1 → Sf1y2. A 2-cell α : (f1, f2) → (g1, g2) consists of a 2-cell α : f1 → g1 in P such that
(S(α)y2)f2 = g2. With the compositions in 1\\S inherited in the obvious way from P , (x, y) 7→ x
becomes the object map of a 2-functor 1\\S → P .

Similarly to T we can associate the 2-category 1//T which is described as follows. An object is a
pair (x, z) where x ∈ P and z ∈ Tx. An arrow (x1, z1)→ (x2, z2) is a pair (f1, f2) where f1 : x1 → x2

and f2 : Tf1z1 → z2. A 2-cell α : (f1, f2) → (g1, g2) consists of a 2-cell α : f1 → g1 in P such that
f2 = g2(T (α)z1). With the compositions in 1//T inherited in the obvious way from P , (x, z) 7→ x
becomes the object map of a 2-functor 1//T → P .

It is useful to picture a typical morphism of 1\\S and a typical morphism of 1//T as

1

Sx1

Sx2

y1 77 OO
Sf1

''y2

f2�� 1

Tx1

Tx2

z1 77
Tf1
��''z2

f2��

respectively. The vertex of the universal lax wedge we are in the process of describing is the 2-category
(1\\S)×P (1//T ). An object of this 2-category will be denoted as (x, y, z) where (x, y) ∈ 1\\S and
(x, z) ∈ 1//T , an arrow will be denoted as (f, f1, f2) : (x1, y1, z1) → (x2, y2, z2) where (f, f1) :
(x1, y1) → (x2, y2) ∈ 1\\S and (f, f2) : (x1, z1) → (x2, z2) ∈ 1//T , and a 2-cell α : (f, f1, f2) →
(g, g1, g2) is by definition a 2-cell α : f → g in P such that (S(α)y2)f1 = g1 and f2 = g2(T (α)z1).
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Construction 5.4.6. We now describe a lax wedge κ for d∗S×d∗T with vertex (1\\S)×P (1//T ).
For x ∈ P we define κx : Sx× Tx→ (1\\S)×P (1//T ) by

κx(y, z) = (x, y, z) κx(f1, f2) = (1x, f1, f2)

where y and f1 : y1 → y2 are in Sx, and z and f2 : z1 → z2 are in Tx. For f : x1 → x2 in P we define
κf : κx1(Sf × 1)→ κx2(1× Tf) as

(κf )(y,z) = (f, 1Sfy, 1Tfz) : (x1, Sfy, z)→ (x2, y, Tfz)

where y ∈ Sx2 and z ∈ Tx1. For α : f → g in P we must give a modification as on the left

κx1(Sf × 1) κx1(Sg × 1)

κx2(1× Tg)κx2(1× Tf)

κx1 (Sα×id)
//

κg
��

//
κxd (id×Tα)

��
κf

κα +3

(x1, Sfy, z) (x1, Sgy, z)

(x2, y, Tgz)(x2, y, Tfz)

(1x1 ,S(α)y ,1z)
//

(g,1Sgy ,1Tgz)
��

//
(1x2 ,1y ,T (α)z)

��
(f,1Sfy ,1Tfz) α +3

and for y ∈ Sx2 and z ∈ Tx1, the component (κα)(y,z) is as indicated on the right in the previous
display. It is straight forward to verify that κx is a functor, κf and κα are natural in the required
senses, and that the lax wedge axioms are satisfied.

Proposition 5.4.7. The lax wedge κ of Construction 5.4.6 exhibits

col(H, d∗S × d∗T ) = (1\\S)×P (1//T ).

Proof. Since 2-Cat admits all cotensors as a 2-Cat-enriched category, it suffices to show, by
Lemma 5.4.4, that for any 2-category X and any lax wedge ψ with vertex X, there exists a unique
2-functor ψ : (1\\S) ×P (1//T ) → X such that ψκ = ψ. For x ∈ P , the equation ψκx = ψx forces
ψ(x, y, z) = ψx(y, z). Observe that an arrow (f, f1, f2) : (x1, y1, z1)→ (x2, y2, z2) in (1\\S)×P (1//T )
can be factored as

(x1, y1, z1)
(1,f1,1)−−−−→ (x1, Sfy2, z1)

(f,1,1,)−−−−→ (x2, y2, T fz1)
(1,1,f2)−−−−→ (x2, y2, z2)

and since
(1, f1, 1) = κx1(f1, 1) (f, 1, 1) = (κf )(y2,z1) (1, 1, f2) = κx2(1, f2)

the equation ψκ = ψ forces us to define

ψ(f, f1, f2) = ψx2(1y2 , f2)(ψf )(y2,z1)ψx1(f1, z1).

Let α : (f, f1, f2) → (g, g1, g2) be a 2-cell in (1\\S)×P (1//T ). Then this 2-cell can be decomposed
in (1\\S)×P (1//T ) in the following way

(x1, y1, z1) (x1, Sfy2, z1) (x2, y2, T fz1)

(x2, y2, z2)(x2, y2, T gz1)(x1, Sgy2, z1)

(1,f1,1)
//

(f,1,1)
//

//
(1,1,g2)

//
(g,1,1)

(1,S(α)y2 ,1)
��

(1,1,T f(α)z1 )
��

α��

and so the equation ψκ = ψ forces ψ(α) to be the composite

ψx1(y1, z1) ψx2(Sfy2, z1) ψx2(y2, T fz1)

ψx2(y2, z2).ψx2(y2, T gz1)ψx1(Sgy2, z1)

ψx1 (f1,1)
//

(ψf )(y2,z1)//

//
ψx2 (1,g2)

//
(ψg)(y2,z1)

ψx1 (S(α)y2 ,1)
��

ψx2 (1,T (α)z1 )
��

(ψα)(y2,z1)��



56 MARK WEBER

So if ψ exists then it is the unique 2-functor such that ψκ = ψ. Thus it suffices to show that if ψ is
defined in this way, then it is indeed a 2-functor, and this 2-functoriality follows easily from the lax
wedge axioms for ψ. �

Putting this result together with Propositions 5.3.6 and 5.4.1 we obtain

Corollary 5.4.8. Let P be a 2-category and S : P op → Cat and T : P → Cat be 2-functors.
Then one has

col(H†L, S × T ) = π0∗((1\\S)×P (1//T )).

Remark 5.4.9. Returning to the situation of Lemma 4.1.3, in which P is a mere category, and
S and T are the discrete-valued B(q−, b) and A(a, p−) respectively. Then in this case 1\\S = q ↓ b,
1//T = a ↓ p, and since these are locally discrete as 2-categories we have

π0∗((1\\S)×P (1//T )) = (1\\S)×P (1//T ) = (q ↓ b)×P (a ↓ p).
By Corollary 5.3.3 the canonical comparison functor

(q ↓ b)×P (a ↓ p) −→
∫ x∈P

B(qx, b)× A(a, px)

from the lax to the strict coend is inverted by π0, and so we recover Lemma 4.1.3 since the codomain
of this comparison functor is discrete.

5.5. Proof of Theorem 5.1.4. In this section we return to the situation of Lemma 5.2.5, and
in the light of the developments of Sections 5.3 and 5.4, give a combinatorial characterisation of
π0-exact squares in 2-Cat. We then reformulate this characterisation in the case where the square
in question is a pullback square, in terms of the 2-functors which generate the pullback. This last
characterisation is then applied to give the proof of Theorem 5.1.4.

We are denoting by obj : Cat → Set the functor which forgets the arrows of a category, and so
obj∗ : 2-Cat→ Cat, which on objects is the process of applying obj to the homs of a 2-category, is
perhaps more plainly described as the process of forgetting 2-cells. From the adjunctions π0 a d a obj,
for any category X one obtains the function cX : obj(X) → π0(X) naturally in X, which explicitly
is given by associating to any object of X its connected component. Thus for any 2-category X,
cX∗ : obj∗X → π0∗X is the identity on objects functor which sends 1-cells of X to their connected
components in the appropriate hom-category of X.

Lemma 5.5.1. For any 2-category X, cX∗ is inverted by π0.

Proof. Since cX∗ is the identity on objects, π0cX∗ is clearly surjective. To say that objects x
and y of X are identified by π0cX∗, is to say that x and y are in the same connected component of
π0∗X. Thus one has an undirected path

x
p1−→ z1 ←− ... −→ zn

pn+1←−− y

of equivalence classes of arrows of X by the connectedness relation in the appropriate homs. Taking
qi ∈ pi for 1 ≤ i ≤ n+ 1, that is choosing inhabitants of these equivalence classes of arrows, gives an
undirected path in obj∗X between x and y whence π0cX∗ is injective. �

Recall the setting of Lemma 5.2.5 is that of a lax square

P B

CA

q //

g
��
//

f

��
p

φ +3
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in 2-Cat. For a ∈ A and b ∈ B writing

E = (1\\B(q−, b))×P (1//A(a, p−))

one has functors

obj∗E
cE−→ π0∗E

comp.−−−→
∫ x∈P

B(qx, b)× A(a, px)
φ̃a,b−−→ C(fa, gb).

By Lemma 5.5.1, Corollary 5.4.8 and Corollary 5.3.3, π0 inverts the first two of these functors, and
so by Lemma 5.2.5 the given square is π0-exact iff for all a, b ∈ P , the above composite functor is
inverted by π0. This is our combinatorial characterisation of π0-exactness. It remains only to read
off what this composite functor is explicitly to have a directly usable criterion.

Let us denote the above composite functor as

C(φ, a, b) : F(φ, a, b) −→ C(fa, gb)

so that in particular

F(φ, a, b) = obj∗((1\\B(q−, b))×P (1//A(a, p−))),

and when the context, that is to say (φ, a, b), is clear, we write this more simply as C : F → C(fa, gb).
In elementary terms the category F is described as follows. An object is a triple (x, y, z) where x ∈ P ,
y : qx→ b and z : a→ px. A morphism (x1, y1, z1)→ (x2, y2, z2) is a triple (h, h1, h2) as in

a

px1

px2

z1 77

ph
��''z2

h2�� b

qx1

qx2

''
y1

qh
�� z2

77h1 ��

and composition is inherited in the evident way from A and B. The functor C(φ, a, b) is given on
objects by (x, y, z) 7→ g(y)φxf(z), and on arrows by

(h, h1, h2) 7→ fa

fpx1 gqx1

gb.

gqx2fpx2

fz1 ::

φx1 //
gy1

$$

::
gy2

//
φx2

$$fz2

fph

��

gqh

��

fh2�� gh1 ��=

To summarise, our combinatorial characterisation of π0-exactness is

Proposition 5.5.2. A lax square

P B

CA

q //

g
��
//

f

��
p

φ +3

in 2-Cat is π0-exact iff for all a ∈ A and b ∈ B, the functor C(φ, a, b) described above in elementary
terms is inverted by π0.

Remark 5.5.3. Let h : X → Y be a functor. The condition that π0 inverts h amounts to the
following conditions

(1) For any y ∈ Y , there exists x ∈ X and an undirected path in Y between hx and y.
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(2) For all x1, x2 ∈ X, if there exists an undirected path between hx1 and hx2 in Y , then there
exists an undirected path in X between x1 and x2.

Condition (1) is the condition that π0h be surjective, and (2) is the condition that π0h be injective,
unpacked in elementary terms. In the case where h itself is surjective on objects, (1) is automatic,
and (2) clearly follows from

(3) For all x1, x2 ∈ X, if there exists hx1 → hx2 in Y , then there exists an undirected path in
X between x1 and x2.

Remark 5.5.4. Given a lax square S in Cat, one has a lax square d∗S in 2-Cat, and S is exact
iff d∗S is π0-exact. Thus the explicit characterisations of exact squares in Cat of Guitart [9], follow
from Proposition 5.5.2 and Remark 5.5.3.

In the case where φ is an identity and the commuting square is a pullback square, we denote
C(φ, a, b) and F(φ, a, b) as C(f, g, a, b) and F(f, g, a, b), and as before denote these as C and F when
(f, g, a, b) are understood. An object of F in this case is a pair (y, z) where y : b1 → b is in B and
z : a→ a1 is in A, such that fa1 = gb1, and in diagramatic terms, we write such an object as

fa
fz−→ fa1 = gb1

gy−→ gb.

The effect of C on (y, z) is just this composite (gy)(fz). A morphism (y1, z1) → (y2, z2) consists of
(β, δ, α, ε) as depicted in

fa

fa1 = gb1

gb.

fa2 = gb2

fz1 55 gy1

))
55

gy2))fz2

fα=gβ

��

fε�� gδ ��

and C(β, δ, α, ε) is the composite 2-cell (g(δ)f(z1))(g(y2)f(ε)) in C. We summarise this special case
in

Corollary 5.5.5. Let f : A→ C and g : B → C be 2-functors. Then the pullback square

P B

CA

//

g
��
//

f

��
pb

is π0-exact iff for all a ∈ A and b ∈ B, the functor C(f, g, a, b) described above is inverted by π0.

Recall that the situation of Theorem 5.1.4 is that of a pullback square

P B

CA

q //

g
��
//

f

��
p pb

in CrIntCat(Cat) in which g is a discrete fibration and f is an objectwise opfibration. These hy-
potheses were described in elementary terms at the end of Section 5.1. By Remark 5.2.2 to prove
Theorem 5.1.4, it suffices to show that Cnr(f) and Cnr(g) satisfy the conditions of Corollary 5.5.5.
This means that for a ∈ A and b ∈ B, we must show that the functor

C(Cnr(f),Cnr(g), a, b) : F(Cnr(f),Cnr(g), a, b) −→ Cnr(C)(fa, gb) (13)



ALGEBRAIC KAN EXTENSIONS ALONG MORPHISMS OF INTERNAL ALGEBRA CLASSIFIERS 59

is inverted by π0.
By Corollary 5.5.5 and the definition of the 2-categories of corners, an object of F = F(Cnr(f),Cnr(g), a, b)

consists of ((v2, h2), (v1, h1)) as on the left

fa fa1 = gb1 gb
(fv1,fh1)

//
(gv2,gh2)

//

a

i a1

v1
�� h1 //

b1

j b1

v2
�� h2 //

in Cnr(C), the data of which is depicted in double categorical terms on the right. A morphism
((v2, h2), (v1, h1))→ ((v4, h4), (v3, h3)) in F consists of the data depicted in

fa

fa1 = gb1

gb.

fa2 = gb2

(fv1,fh1)
22 (gv2,gh2)

,,22

(gv4,gh4),,(fv3,fh3)

(fv5,fh5)=(gv6,gh6)

��

(fφ1,fφ2) �� (gφ3,gφ4)��

Recall that the effect of C is to send such data to the composite 1 or 2-cells they describe in Cnr(C).

Lemma 5.5.6. Suppose that f : A→ C and g : B → C are morphisms of CrIntCat(Cat), g is a
discrete fibration, f is an objectwise opfibration, a ∈ A and b ∈ B. Then any object ((v2, h2), (v1, h1))
of F is in the same connected component of its fibre by C as one in which v1 is f0-opcartesian, h1 is
a horizontal identity and v2 is a vertical identity.

Proof. We begin by taking the chosen opcartesian square κ1 as on the left in

fi1 fa1 = gb1

gj1k1

fh1 //

gv2
��

//
h3

��
v3 κ1

i1 a1

i2i3

h1 //

v4
��
//

h4

��
v5 κ2

j2 b1

j1j3

h5 //

v2
��
//

h6

��
v6 κ3

Take an f0-opcartesian lift v4 : a1 → i2 of gv2. Then take the chosen opcartesian square κ2 in A, and
since f is a crossed internal functor fκ2 = κ1. Define h5 : j2 → b1 as the unique horizontal arrow in
B such that gh5 = fh1. Then take the chosen opcartesian square κ3 in B as in the previous display,
and since g is a crossed internal functor gκ3 = κ1. Next take an f0-opcartesian lift v7 : a → i4 of
f(v5v1), and so one has v8 : i4 → i3 unique such that v8v7 = v5v1 and fv8 = 1k1 . The diagram

fa

fa1 = gb1

gb

fi4 = gj3

fi2 = gj1

(fv1,fh1)

77

(gv2,gh2)

''
77

(g1j3 ,g(h2h6))

''

(fv7,f1i4 )

//
(f(v5v1),fh5) ��

(fv4,f1i2 )=(gv2,g1j1 )

(g1j1 ,gh2)
//

OO

(fv8,fh4)=(g1j3 ,gh6)

f(id)�� g(id)��

f(id)
KS

g(id)
KS
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exhibits the object ((v2, h2), (v1, h1)) of F as being in the same connected component of its fibre as
an object of the required form. �

Proof. (of Theorem 5.1.4). Our task is to show that for a ∈ A and b ∈ B, the functor (13)
satisfies the conditions described in Remark 5.5.3. Recall that in terms of the double category C, a
morphism fa → gb in Cnr(C) is a pair (v, h), where v : fa → c is a vertical arrow, and h : c → gb
is a horizontal arrow. Since f0 is an opfibration there is a vertical arrow u : a → a1 in A such that
fu = v. Since g is a discrete fibration there is a (unique) horizontal arrow k : b2 → b such that
gk = h. The functor (13) sends ((1b2 , k), (u, 1a1)) to (v, h), and so we have verified condition(1) of
Remark 5.5.3. In fact in this case the functor (13) itself is surjective on objects.

It remains to verify condition (3) of Remark 5.5.3. In light of Lemma 5.5.6 it suffices to verify
that given

x1 = fa fa1 = gb1 gb
(fv1,f1a1 )

//
(g1b1 ,gh1)

// x2 = fa fa2 = gb2 gb
(fv2,f1a2 )

//
(g1b2 ,gh2)

//

in F where v1 and v2 are f0-opcartesian, and

fa

fa1 = gb1

gb

fa2 = gb2

(fv1,f1a1 ) 33 (g1b1 ,gh1)

++33

(g1b2 ,gh2)
++

(fv2,f1a2 )

(φ1,φ2)��

in Cnr(C), then x1 and x2 are in the same connected component of F .
In double categorical terms we have v1, v2, h1, h2, φ1 and φ2 as in

a

a1

v1
��

a

a2

v2
��

b1 b
h1 //

b2 b
h2 //

gb1 gb
gh1 //

gb

g1b
��

gb2
//

gh2

��
φ1 φ2

b1 b
h1 //

b

1b
��

b2
//

h2

��
φ3 φ4

such that φ1f(v1) = fv2. Since g is a discrete fibration there is a unique square φ4 as on the right
in the previous display, and by the uniqueness of lifts of horizontal arrows, the source and target
horizontal arrows of φ4 must be h1 and h2 respectively as indicated. Since φ1f(v1) = fv2 and v1 is
f0-opcartesian, there is a unique vertical arrow v3 : a1 → a2 such that fv3 = φ1 and v3v1 = v2. Using
all this information, the diagram

fa

fa1 = gb1

gb

fa2 = gb2

(fv1,f1a1 ) 22 (g1b1 ,gh1)

,, 22

(g1b2 ,gh2),,(fv2,f1a2 )

(fv3,f1a2 )=(gφ3,g1b2 )

��

(f(id),f(id)) �� (gφ3,gφ4)��

exhibits an arrow in F between x1 and x2. �

5.6. TG via codescent. Given a 2-monad (K, T ) and a strict T -algebra (X, x), as in Section
4.3 of [32], we denote by RTX the standard simplicial T -algebra whose 2-truncation is

T 3X T 2X TX.TηTX
oo

µTX //

Tx
//

µTTX //
TµTX

//

T 2x

//
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From the data of the adjunction F : (L, S)→ (K, T ) of 2-monads one has, for each strict S-algebra
(X, x), a simplicial objectRFX : ∆op → T -Algs defined as in Construction 4.3.1 [32] by the equations
on the left for n ∈ N, and the isomorphisms on the right

(RFX)n = TF!S
nX S-Algs(RSX,FY ) ∼= T -Algs(RFX, Y )

which are 2-natural in X and Y . From this abstract definition one may deduce, as in Lemma 4.3.2
of [32], that the face and degeneracy maps of RFX are given by the formulae

dn+1
i =

 TF!S
nx i = 0

TF!S
n−iµSSi−1X 1 ≤ i ≤ n

µTF!SnX
T (F c

SnX) i = n+ 1
sn+1
i = TF!S

n−iηSSiX .

In particular RT = R1T . Proposition 4.3.3 of [32] says that when T -Algs has codescent objects, the

left adjoint (−)†F to JF exists and is given on objects by the formula on the left

X†F = CoDesc(RFX) T S = CoDesc(RF1) (14)

which in particular gives the formula on the right when L has a terminal object 1.
We now extend this to exhibit TG as the result of applying

CoDesc : [∆op, T -Algs] −→ T -Algs

to a morphism of simplicial T -algebras. As recalled in Remark 3.2.4, the unit of the adjunction
(−)†F a JF is denoted as gF , and in the context of a morphism G : H → F of internalisable
adjunctions, gF1 and gH1 are the universal lax morphisms

gST : 1 −→ FT S gRT : 1 −→ HTR.

Given (X, x) ∈ S-Algs, by the universal property of the unit gH , one has a unique strict T -morphism

G†X making

GX H(GX)†H

HX†FGFX†F

gH
GX //

HG†X��
//

γ
X
†
F

��
GgFX

commute in R-Algl. When X = 1 one has G†X = TG by Remark 3.2.4. We shall now explain how

G†X may be obtained as the result of applying CoDesc to a morphism of simplicial T -algebras. This
morphism of simplicial T -algebras is provided by

Construction 5.6.1. Let H : (M, R) → (K, T ) and F : (L, S) → (K, T ) be internalisable
adjunctions and G : H → F be a morphism thereof. Then we define

(RG)X : RHGX −→ RFX

2-naturally in X ∈ S-Algs, as unique such that

T -Algs(RFX,FY ) T -Algs(RHGX, Y )

R-Algs(RRGX,HY )R-Algs(GRSX,GFY )S-Algs(RSX,FY )

T -Algs(RFX,Y )
//

��
//

R-Algs(G
l
X ,γY )

//
GRSX,FY

��

commutes for all Y ∈ T -Algs, in which the vertical arrows are the isomorphisms recalled above.
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Next we give an explicit description of the components of (RG)X,n. First we require some pre-
liminary notation. Given an adjunction of 2-monads F : (L, S) → (K, T ) one has 2-natural trans-
formations F c : F!S → TF! and F l : SF ∗ → F ∗T making (F!, F

c) and (F ∗, F l) colax and lax monad
morphisms respectively. In fact for each n ∈ N one has F c

n : F!S
n → T nF! and F l

n : SnF ∗ → F ∗T n

defined inductively by the formulae

F c
0 = idF!

F c
n+1 = (T nF c)(F c

nS) F l
0 = idF ∗ F l

n+1 = (F lT n)(SF l
n)

so that in particular F c
1 = F c and F l

n = F l.

Lemma 5.6.2. The component (RG)X,n defined by Construction 5.6.1 is given by the composite

TH!R
nG∗X

TF!((G
c
n)G∗X)−−−−−−−−→ TF!S

nG!G
∗X

TF!S
nεGX−−−−−→ TF!S

nX.

Proof. We denote by

ϕFX,Y,n : S-Algs(S
n+1X,FY ) −→ T -Algs(TF!S

nX, Y )

the components of the defining isomorphism of RF . In the proof of Lemma 4.3.2 of [32], this was
denoted as ϕX,Y,n and both ϕFX,Y,n and its inverse were described explicitly. We shall use these details

here. By definition an explicit description of (RG)X,n is obtained by tracing through the effect of the
composite

ϕHG∗X,Y,n ◦R-Algs(G
l
n+1,X , γY ) ◦GSn+1X,FY ◦ (ϕFX,Y,n)−1

on 1TF!SnX (in the case Y = TF!S
nX). By the formula for (ϕFX,Y,n)−1, the morphism (ϕFX,Y,n)−1(1TF!SnX)

is the component at X of the composite

(F ∗µTF!S
n)(F lTF!S

n)(SF ∗ηTF!S
n)(SηFSn)

which in terms of the string diagrams5 of [10] can be written as on the left of

ηF

ηTF l

µT

F!

S

F ∗ T

Sn

Sn

=

ηF

F l

F!

S

TF ∗

Sn

Sn

and the equation follows by one of T ’s unit laws. Applying

ϕHG∗X,Y,n ◦R-Algs(G
l
n+1,X , γY ) ◦GSn+1X,FY

5The string diagrams in this work go from top to bottom.
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to this component, given that Gl
n+1 = (GlRn)(RGl

n), reveals (RG)X,n as the component at X of the
first term of

ηR Gln

Gl ηF

F l

γ

εH

µT

Rn G∗

SnF!

H!T

T

=

Gln

ηS ηF

F l

εF

µT

εG

Rn G∗

SnF!

F!T

T

G!

=

Gcn

εGηF

εF

ηT

µT

G! RnG∗

Sn

F!

F!T

T

=

Gcn

εG

G! R
n G∗

Sn

F!

F!

T

T

and the above computation follows by the definition of γ, the compatibility of F l and Gl with units,
the mateship of Gl

n and Gc
n, a triangle equation of F! a F ∗, and a unit law of T . The component at

X of the last term in this computation is the composite of the statement. �

Having identified the simplicial morphism (RG)X in Construction 5.6.1 and given an explicit
description of its components in Lemma 5.6.2, we come to the main result of this section.

Proposition 5.6.3. Suppose that H : (M, R)→ (K, T ) and F : (L, S)→ (K, T ) are internalis-
able adjunctions of 2-monads, and that G : H → F is a morphism between them. Then

G†X = CoDesc((RG)X).

Remark 5.6.4. The case X = 1 of Proposition 5.6.3 is our promised explicit description of
TG : TR → T S. The diagram

TH!R
21 TH!R1 TH!1TH!η

R
1

oo

µTH!1
T (Hc

1)
//

TH!(!)
//

µTH!R1T (Hc
R1)

//
TH!µ

R
1

//

TH!R(!)
//

TF!S
21 TF!S1 TF!1TF!η

S
1

oo

µTF!1
T (F c1 )

//

TF!(!)
//

µTF!S1
T (F cS1)

//
TF!µ

S
1

//

TF!S(!)
//

TF!(S
2(εG1 )(Gc2)1)

��

TF!(S(εG1 )Gc1)

��

TF!(ε
G
1 )

��

contains that part of (RG)1 which influences this explicit description of TG.

Proof. (of Proposition 5.6.3) As recalled above the unit of the adjunction (−)†F a JF is denoted
gF , its components being lax morphisms between strict T -algebras. Suppose that for (X, x) ∈ S-Algs,
that a codescent cocone for RFX

qFX,0 : TF!X → X†F qFX,1 : qFX,0µ
T
F!X

T (F c
X)→ qFX,0TF!(x)

is given. Then by Lemma 4.3.4 of [32] the equations

gFX = F ∗(qFX,0)F ∗(ηTF!X
)ηFX gFX = F ∗(qFX,1)F ∗(ηTF!SX

)ηFSX
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describe the underlying arrow and lax morphism coherence 2-cell of

gFX : X −→ FX†F

in terms of the given codescent data.
By the definition of G†X it suffices to show that

GX H(GX)†H

HX†FGFX†F

gH
GX //

HCoDesc((RG)X)��
//

γ
X
†
F

��
GgFX

commutes in R-Algl. By definition the strict T -morphism CoDesc((RG)X) is defined uniquely by

CoDesc((RG)X)qH
GX,0

= qFX,0TF!(ε
G
X) CoDesc((RG)X)qH

GX,1
= qFX,1TF!(S(εGX)Gc

G∗X).

Thus the lax R-algebra morphism H(CoDesc(RG)X)gH
GX

has, by Lemma 4.3.4 of [32], underlying 1
and 2-cell data given by

H∗(qFX,0)H∗TF!(ε
G
X)H∗(ηTH!G∗X

)ηHG∗X H∗(qFX,1)H∗TF!(S(εGX)Gc
G∗X)H∗(ηTH!RG∗X

)ηHG∗RX .

The underlying 1-cell of the lax R-morphism γX†F
G(gFX) is the composite on the left hand side of

γX†F
G∗F ∗(qFX,0)G∗F ∗(ηTF!X

)G∗(ηFX) = H∗(qFX,0)H∗(ηTF!X
)γF!X

G∗(ηFX)

which because of the naturality of γ equals the expression on the right. Similarly the 2-cell data for
γX†F

G(gFX) is H∗(qFX,1)H∗(ηTF!SX
)γF!SX

G∗(ηFSX). To reconcile these two lax R-morphisms it suffices to

show that the outside of

G∗ G∗F ∗F! H∗F!

H∗TF!H∗TH!G
∗H∗H!G

∗

G∗ηF // γF! //

H∗ηTF!��
//

H∗TF!ε
G

//
H∗ηTG∗

��
ηHG∗ H∗F!ε

G

33

commutes, and we note that the bottom inner region of this diagram commutes by naturality. To
establish commutativity of the top inner region, we note that by the universal property of ηG it
suffices to show

(H∗F!ε
GG!)(η

HG∗G!)η
G = (γH!)(G

∗ηFG!)η
G. (15)

Recall that the canonical isomorphism γ : G∗F ∗ → H∗ is the witness to the fact that both G∗F ∗ and
H∗ are right adjoints to F!G! = H!. Thus one formula which determines this canonical isomorphism
uniquely says that the right hand side of (15) equals ηH . The calculation

(H∗F!ε
GG!)(η

HG∗G!)η
G = (H∗F!ε

GG!)(H
∗H!η

G)ηH = ηH

in which the first step follows by naturality, and the second by a triangle equation for G! a G∗,
establishes the same for the left hand side of (15). �
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5.7. Proof of Theorem 3.3.2. Given an internalisable adjunction F : (L, S) → (K, T ) of 2-
monads as in Proposition 5.6.3, if T preserves codescent objects, then by Corollary 4.3.6 of [32] one
can write the underlying object and T -algebra action of T S as

T S = CoDesc(UTRF1) aS = CoDesc(σTRF1)

and similarly for TR. Putting this together with Proposition 5.6.3 gives

Proposition 5.7.1. Suppose that H : (M, R)→ (K, T ) and F : (L, S)→ (K, T ) are internalis-
able adjunctions of 2-monads, and that G : H → F is a morphism between them. Suppose moreover
that T preserves codescent objects. Then the algebra square for TG is obtained by applying CoDesc
to the commutative square

TUTRH1 TUTRF1

UTRF1UTRH1

TUT (RG)1 //

σTRF 1
��

//
UT (RG)1

��
σTRH1

of simplicial objects in K.

Before proceeding to the proof of Theorem 3.3.2, we point out that there is a more elementary
situation in which the exactness of TG is guaranteed, but which does not require the developments of
Sections 5.1-5.5. In particular this case suffices for [3], and justifies Theorems 5.14 and 5.15 therein.

We denote by Catpb the 2-category of categories with pullbacks, pullback preserving functors and
cartesian natural transformations, and by Cat(−) : Catpb → 2-Cat the 2-functor which sends any
category E with pullbacks to the 2-category Cat(E) of category objects in E . Recall that adjunctions
of monads and morphisms thereof can be defined in any 2-category. Suppose we are given adjunctions
of monads in Catpb and morphisms thereof as on the left in

(C, R′) (D, S ′)

(E , T ′)

G′ //

F ′����H′

(M, R) (L, S)

(K, T )

G //

F����H

and we denote the result of applying Cat(−) to this as on the right. So in particular, the 2-monads
R, S and T are Cat(R′), Cat(S ′) and Cat(T ′) respectively.

Theorem 5.7.2. In the context just described TG : TR → T S is exact.

Proof. Since in this context the simplicial objects appearing in the square of Proposition 5.7.1
are componentwise discrete category objects, and so taking codescent in this case is simply a matter
of interpretting this as a square in K = Cat(E). Recall that an internal functor f : X → Y is a
discrete fibration iff the square

X1 X0

Y0Y1

d0 //

f0
��
//

d0

��
f1

is a pullback. This is so for σTRF1 as an internal functor since µT
′
is cartesian natural, and so σTRF1

is a discrete fibration. Moreover the cartesianness of µT
′

also ensures that the square of Proposition
5.7.1 is a pullback square in K. Thus the result follows by Proposition 4.3.4. �
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Recall in the context of Theorem 3.3.2, one has a commutative triangle of polynomial adjunctions
of 2-monads

(Cat/I,R) (Cat/J, S)

(Cat/K, T )

G //

Fzz$$H

which gives, by Construction 3.2.3, the strict morphism of strict T -algebras TG : TR → T S. Moreover
one assumes that I, J and K are discrete and pT is a discrete opfibration with finite fibres. Theorem
3.3.2 says that under these conditions TG is exact.

Proof. (of Theorem 3.3.2). The square of Proposition 5.7.1 lives in [∆op,Cat/K], in the present
context, and we denote this square as S. The algebra square of TG is CoDesc(S) by Proposition
5.7.1. Pointwise left Kan extensions, comma objects and codescent objects in Cat/K are formed
fibrewise, and so by Theorem 5.1.4, it suffices to show

(1) S is a pullback square in CrIntCat(Cat/K),
(2) σTRF1 is a discrete fibration, and
(3) UT (RG)1 is an objectwise opfibration.

(1): Since pT is a discrete opfibration with finite fibres and such functors are pullback stable, pS
and pR are also discrete opfibrations with finite fibres. By Theorem 4.4.5 of [34] R, S and T are
opfamilial 2-monads. Since H! and F! are of the form Σh and Σf , they are also opfamilial 2-functors.
By Theorem 4.5.1 of [34] T preserves all sifted colimits, and thus in particular codescent objects.
The object G!1 of Cat/J is just g : I → J , which is discrete as an object of Cat/J since I is
a discrete category. We will now see that as a consequence of these formal properties, S lives in
CrIntCat(Cat/K).

As recalled in Section 4.6 opfamilial 2-functors preserve split opfibrations and morphisms thereof.
By Proposition 4.4.1 of [32] the simplicial objects appearing in the square of Proposition 5.7.1 are
category objects. The codescent-relevant part of σTRF1 is

T 2F!S
21 T 2F!S1 T 2F!1T 2F!η

S
1

oo

TµTF!1
T 2(F c1 )

//

T 2F!(!)

//

TµTF!S1
T 2(F cS1)

//
T 2F!µ

S
1

//

T 2F!S(!)

//

TF!S
21 TF!S1 TF!1TF!η

S
1

oo

µTF!1
T (F c1 )

//

TF!(!)
//

µTF!S1
T (F cS1)

//
TF!µ

S
1

//

TF!S(!)
//

µT
F!S

21

��

µTF!S1

��

µTF!1

��

and since every map into a discrete object is a split opfibration with chosen opcartesians exactly
the identity 2-cells, ηS1 and µS1 are morphisms of split opfibrations over 1. Since TF! and T 2F! are
opfamilial they send these to morphisms of split opfibrations over TF!1 and T 2F!1 respectively, thus
exhibiting UTRF1 and TUTRF1 as crossed internal categories. Since µT is an opfamilial natural
transformation, (µTF!S1, µ

T
F!1

) : T 2F!tS1 → TF!tS1 is a morphism of split opfibrations by Proposition
4.3.6 of [34], and so σTRF1 is a crossed internal functor. Similarly σTRH1 is a crossed internal
functor.
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The codescent-relevant part of UT (RG)1 is

TH!R
21 TH!R1 TH!1TH!η

R
1

oo

µTH!1
T (Hc

1)
//

TH!(!)
//

µTH!R1T (Hc
R1)

//
TH!µ

R
1

//

TH!R(!)
//

TF!S
21 TF!S1 TF!1TF!η

S
1

oo

µTF!1
T (F c1 )

//

TF!(!)
//

µTF!S1
T (F cS1)

//
TF!µ

S
1

//

TF!S(!)
//

TF!(S
2(εG1 )(Gc2)1)

��

TF!(S(εG1 )Gc1)

��

TF!(ε
G
1 )

��

and to say that this underlies a crossed internal functor is to say that the square on the left in

TH!R1 TF!S1

TF!1TH!1

TF!(S(εG1 )Gc1)
//

TF!(tS1)
��

//
TF!(ε

G
1 )

��
TH!(tR1)

G!R1 S1

1G!1

S(εG1 )Gc1 //

tS1
��
//

εG1

��
G!(tR1)

underlies a morphism of split opfibrations TH!(tR1) → TF!(tS1). Now this square is the result of
applying TF! to the square on the right. Since G!1 is discrete, the chosen G!tR1-opcartesian 2-cells
exactly the identities, and so the square on the right in the previous display is a morphism of split
opfibrations G!(tR1) → tS1. Thus since TF! and T 2F! are opfamilial, the square on the left in the
previous display, and also T of that square, are morphisms of split opfibrations. Thus UT (RG)1 and
TUT (RG)1 are crossed internal functors, and so S does indeed live in CrIntCat(Cat/K). It is a
pullback by Lemma 5.1.2 and since µT is cartesian.

(2): Follows immediately from the cartesianness of µT .
(3): To see that (UT (RG)1)0 is an opfibration, note that it is the result of applying TF! to the

unique morphism tG!1 : G!1 → 1. Like any map into a discrete object, tG!1 is an opfibration. Since
TF! is opfamilial, and opfamilial 2-functors preserve opfibrations, the result follows. �
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