
The purpose of this talk is to introduce 2-

toposes, which are 2-categories rich enough

so that a lot of category theory can be de-

veloped inside them. They are one part of

a meta-theory whose purpose is to organise

the combinatorial machinery of higher dimen-

sional category theory. In particular if you

have a 2-topos K then you can express what

it means for an object of K to have small col-

imits, and the basic theory of colimits unfolds

in nice analogy with K=CAT case.

Overview:

• operadic motivations.

• 2-toposes and examples.

• results on internal cocompleteness.
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One can recognise a space X as having the
homotopy type of a loop space when there
are continuous functions

Kn ×Xn → X

respecting certain axioms, where Kn is a con-
vex polytope called the n-th associahedron.

The categorical/combinatorial ingredients for
the “classical” theory of operads are:

1. a braided monoidal category V (which in
the above example is Top).

2. an operad in V which is a sequence

K : N → V
of objects of V together with more data
and axioms encoding substitution.

3. K can act on objects

X : 1 → V
of V to express structure.
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Colimits arise in the classical theory of oper-

ads in the following ways:

1. defining the substitution tensor product

of collections.

(K ◦L)n =
∑

n1+...+nr=n

Kr⊗Ln1⊗ ...⊗Lnr

2. turning operads into monads.

K(X) =
∑
n∈N

Kn ⊗X⊗n

3. comparing different types of operads (eg:

symmetric versus non-symmetric).

all requiring that the V you work in has enough

colimits, and that these colimits are compat-

ible with ⊗.
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From the perspective of higher category the-

ory the raw data for a space X is its under-

lying globular set

X0 X1oo

oo

X2oo

oo

X3oo

oo
...

oo

oo

and the classical

K : N → V X : 1 → V

is replaced by

K : Tr → SpG(Set) X : 1 → SpG(Set)

Another important class of examples: take a

V from the classical theory and suspend it to

get an n-globular category. Organising the

theory of higher operads takes you into

the world of globular categories!

4



A 2-cell

A
g

//

f   A
AA

AA
AA

B

h~~}}
}}

}}
}}

C

φ
+3

in a 2-category K exhibits h as a left exten-

sion of f along g when ∀k pasting with φ:
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provides a bijection between 2-cells h⇒k and

2-cells f⇒kg.
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This 2-cell is a pointwise left extension when

for all b : X→B, the composite

g/b //

��

X
b
��

A g //
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EE
EE
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||
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exhibits hb as a left extension.

Roughly then, C is cocomplete when point-

wise left extensions into it exist.
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So we can ask:

1. Is SpG(Set) or more generally SpG(V) where

V is a cocomplete category, cocomplete

as a globular category?

2. What about Σn(V)?

3. Is SpG(Set) in fact the small globular col-

imit completion of 1 just as Set is the

small colimit completion of 1?
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Recall that a category E is an elementary

topos when

1. it has finite limits,

2. is cartesian closed, and

3. has a subobject classifier.

So what’s a 2-categorical analogue of subob-

ject classifier?
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To any functor f : A→Set a version of the

Grothendieck construction associates to f a

discrete opfibration G(f) : e(f)→A to provide

a fully faithful functor

GU,A : CAT(A,Set) → DOpFib(A)

whose image consists of those discrete opfi-

brations with small fibres.

The analogy with topos theory comes about

because G can be described as

e(f)

G(f)

��

//Set•

U

��

A f
//Set
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Definition 1 Let K be a finitely complete 2-

category. A discrete opfibration τ : Ω•→Ω in

K is classifying when the functors

Gτ,A : K(A,Ω) → DFib(1, A)

are fully faithful for all A ∈ K.

Definition 2 A 2-topos (K, (−)◦, τ) is a finitely

complete cartesian closed 2-category K equipped

with a duality involution (−)◦ and a classify-

ing discrete opfibration τ : Ω•→Ω.
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Theorem 3 Let

A
S

//
B

Eoo

⊥

be a 2-adjunction and A and B be finitely

complete 2-categories. If

1. E preserves pullbacks, and

2. naturality squares for the counit at maps

in A which are discrete opfibrations, are

pullbacks

then S preserves classifying discrete opfibra-

tions.
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Examples:

1. The subobject classifier

τ : 1 → Ω

of an elementary topos E regarded as an

internal functor is a classifying discrete

opfibration in Cat(E).

2. U : Set•→Set is a c.d.o for CAT. Simi-

larly with Set replaced by finite sets.

3. SpG(U), ΣSpG(U), Σ2SpG(U), ... are

c.d.o’s for CAT(Ĝ).

4. there’s a version of SpG(U) for CAT(Ĉ).
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Definition 4 A map f : A→B in a 2-topos is

admissible when the discrete fibration f/B is

in the image of the canonical functor

K(B, Â) → DFib(A, B)

An object A is admissible when the map 1A

is admissible. A is small when it is admissible

and Â is admissible.

There is a general result which enables one

to characterise smalls and admissibles. For

instance for SpG(U) the corresponding small

globular categories are just those that are

small at each level.

Definition 5 An object A in a 2-topos is co-

complete when it admits all pointwise left ex-

tensions along any h : X→Z such that X is

small and Z is admissible.
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Theorem 6 Let

A
S

//
B

Eoo

⊥

be a 2-adjunction, A and B be 2-toposes

which exhibit small lax pullbacks. If

1. E preserves small objects, admissible ob-

jects and lax pullbacks up to a right ad-

joint section; and

2. S preserves admissible objects

then S preserves objects which are both ad-

missible and cocomplete.
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Theorem 7 1. SpG(Set) is the small glob-

ular colimit completion of 1.

2. SpG(Set) is cartesian closed as a globular

category.

In fact the above results are true when G is

replaced by an arbitrary small category C.
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