The purpose of this talk is to introduce 2-toposes, which are 2-categories rich enough so that a lot of category theory can be developed inside them. They are one part of a meta-theory whose purpose is to organise the combinatorial machinery of higher dimensional category theory. In particular if you have a 2-topos $\mathcal K$ then you can express what it means for an object of $\mathcal K$ to have small colimits, and the basic theory of colimits unfolds in nice analogy with $\mathcal K$ =CAT case.

Overview:

- operadic motivations.
- 2-toposes and examples.
- results on internal cocompleteness.

One can recognise a space X as having the homotopy type of a loop space when there are continuous functions

$$K_n \times X^n \to X$$

respecting certain axioms, where K_n is a convex polytope called the n-th associahedron.

The categorical/combinatorial ingredients for the "classical" theory of operads are:

- 1. a braided monoidal category \mathcal{V} (which in the above example is Top).
- 2. an operad in $\mathcal V$ which is a sequence

$$K: \mathbb{N} \to \mathcal{V}$$

of objects of $\mathcal V$ together with more data and axioms encoding substitution.

3. K can act on objects

$$X: \mathbf{1} \to \mathcal{V}$$

of \mathcal{V} to express structure.

Colimits arise in the classical theory of operads in the following ways:

1. defining the substitution tensor product of collections.

$$(K \circ L)_n = \sum_{n_1 + \dots + n_r = n} K_r \otimes L_{n_1} \otimes \dots \otimes L_{n_r}$$

2. turning operads into monads.

$$\overline{K}(X) = \sum_{n \in \mathbb{N}} K_n \otimes X^{\otimes n}$$

comparing different types of operads (eg: symmetric versus non-symmetric).

all requiring that the $\mathcal V$ you work in has enough colimits, and that these colimits are compatible with \otimes .

From the perspective of higher category theory the raw data for a space \boldsymbol{X} is its underlying globular set

$$X_0 \stackrel{\leftarrow}{=} X_1 \stackrel{\leftarrow}{=} X_2 \stackrel{\leftarrow}{=} X_3 \stackrel{\leftarrow}{=} \cdots$$

and the classical

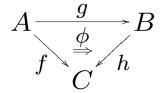
$$K: \mathbb{N} \to \mathcal{V}$$
 $X: \mathbf{1} \to \mathcal{V}$

is replaced by

$$K: \mathsf{Tr} \to \mathsf{Sp}_{\mathbb{G}}(\mathsf{Set}) \qquad X: 1 \to \mathsf{Sp}_{\mathbb{G}}(\mathsf{Set})$$

Another important class of examples: take a V from the classical theory and suspend it to get an n-globular category. Organising the theory of higher operads takes you into the world of globular categories!

A 2-cell

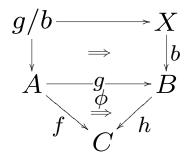


in a 2-category K exhibits h as a *left extension* of f along g when $\forall k$ pasting with ϕ :

$$\kappa: h \Rightarrow k \qquad \mapsto \qquad A \xrightarrow{g} B \\ f \xrightarrow{\phi} h \xrightarrow{\kappa} B$$

provides a bijection between 2-cells $h \Rightarrow k$ and 2-cells $f \Rightarrow kg$.

This 2-cell is a *pointwise* left extension when for all $b: X \rightarrow B$, the composite



exhibits hb as a left extension.

Roughly then, C is cocomplete when pointwise left extensions into it exist.

So we can ask:

- 1. Is $Sp_{\mathbb{G}}(Set)$ or more generally $Sp_{\mathbb{G}}(\mathcal{V})$ where \mathcal{V} is a cocomplete category, cocomplete as a globular category?
- 2. What about $\Sigma^n(\mathcal{V})$?
- 3. Is $Sp_{\mathbb{G}}(Set)$ in fact the small globular colimit completion of 1 just as Set is the small colimit completion of 1?

Recall that a category ${\mathcal E}$ is an ${\it elementary}$ ${\it topos}$ when

- 1. it has finite limits,
- 2. is cartesian closed, and
- 3. has a subobject classifier.

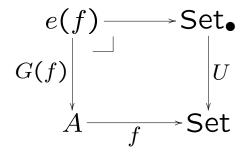
So what's a 2-categorical analogue of subobject classifier?

To any functor $f:A{\longrightarrow} {\sf Set}$ a version of the Grothendieck construction associates to f a discrete optibration $G(f):e(f){\longrightarrow} A$ to provide a fully faithful functor

$$G_{U,A}: \mathsf{CAT}(A,\mathsf{Set}) \to \mathsf{DOpFib}(A)$$

whose image consists of those discrete opfibrations with small fibres.

The analogy with topos theory comes about because G can be described as



Definition 1 Let K be a finitely complete 2-category. A discrete optibration $\tau: \Omega_{\bullet} \to \Omega$ in K is classifying when the functors

$$G_{\tau,A}:\mathcal{K}(A,\Omega)\to\mathsf{DFib}(1,A)$$

are fully faithful for all $A \in \mathcal{K}$.

Definition 2 A 2-topos $(\mathcal{K}, (-)^{\circ}, \tau)$ is a finitely complete cartesian closed 2-category \mathcal{K} equipped with a duality involution $(-)^{\circ}$ and a classifying discrete optibration $\tau : \Omega_{\bullet} \to \Omega$.

Theorem 3 Let

$$\mathcal{A} \xrightarrow{E}_{S} \mathcal{B}$$

be a 2-adjunction and \mathcal{A} and \mathcal{B} be finitely complete 2-categories. If

- 1. E preserves pullbacks, and
- naturality squares for the counit at maps in A which are discrete opfibrations, are pullbacks

then S preserves classifying discrete opfibrations.

Examples:

1. The subobject classifier

$$\tau: 1 \to \Omega$$

of an elementary topos \mathcal{E} regarded as an internal functor is a classifying discrete optibration in $Cat(\mathcal{E})$.

- 2. $U: \mathsf{Set}_{\bullet} \to \mathsf{Set}$ is a c.d.o for CAT. Similarly with Set replaced by finite sets.
- 3. $\operatorname{Sp}_{\mathbb{G}}(U)$, $\operatorname{\Sigma}\operatorname{Sp}_{\mathbb{G}}(U)$, $\operatorname{\Sigma}^2\operatorname{Sp}_{\mathbb{G}}(U)$, ... are c.d.o's for $\operatorname{CAT}(\widehat{\mathbb{G}})$.
- 4. there's a version of $\operatorname{Sp}_{\mathbb{G}}(U)$ for $\operatorname{CAT}(\widehat{\mathbb{C}})$.

Definition 4 A map $f: A \rightarrow B$ in a 2-topos is admissible when the discrete fibration f/B is in the image of the canonical functor

$$\mathcal{K}(B,\widehat{A}) \to \mathsf{DFib}(A,B)$$

An object A is admissible when the map $\mathbf{1}_A$ is admissible. A is small when it is admissible and \widehat{A} is admissible.

There is a general result which enables one to characterise smalls and admissibles. For instance for $\operatorname{Sp}_{\mathbb{G}}(U)$ the corresponding small globular categories are just those that are small at each level.

Definition 5 An object A in a 2-topos is cocomplete when it admits all pointwise left extensions along any $h: X \rightarrow Z$ such that X is small and Z is admissible.

Theorem 6 Let

$$\mathcal{A} \xrightarrow{E} \mathcal{B}$$

be a 2-adjunction, \mathcal{A} and \mathcal{B} be 2-toposes which exhibit small lax pullbacks. If

- 1. E preserves small objects, admissible objects and lax pullbacks up to a right adjoint section; and
- 2. S preserves admissible objects

then S preserves objects which are both admissible and cocomplete.

Theorem 7 1. $Sp_{\mathbb{G}}(Set)$ is the small globular colimit completion of 1.

2. $Sp_{\mathbb{G}}(Set)$ is cartesian closed as a globular category.

In fact the above results are true when \mathbb{G} is replaced by an arbitrary small category \mathbb{C} .