Weak n-categories with strict units via iterated enrichment Mark Weber

Introduction

Reduced *n*-operads

Contractibility

Main Theorem

Weak n-categories with strict units via iterated enrichment

Mark Weber

CMS Halifax June 2013

joint with Michael Batanin and Denis-Charles Cisinski

n-operads

Weak n-categories with strict units via iterated enrichment

Introduction

Reduced *n*-operads Contractibili $\mathcal{T}_{\leq n}$ denotes the monad on \mathcal{G}^n **Set** whose algebras are strict *n*-categories. The *k*-cells of $\mathcal{T}_{\leq n}$ 1 are globular pasting diagrams of dimension $\leq k$.

An *n*-operad is a cartesian monad morphism $A \to \mathcal{T}_{\leq n}$. The fibre $A_p \subseteq A_k$ over $p \in (\mathcal{T}_{\leq n}1)_k$ is the set of ways of composing p to a k-cell in any A-algebra.

n-operads

Weak n-categories with strict units via iterated enrichment

Mark Weber

Introduction

Reduced *n*-operads

Contractibility

For $p = \bullet \to \bullet \to \bullet \to \bullet \in (\mathcal{T}_{\leq 2})_1$ and A the operad for bicategories in the sense of Bénabou, A_p includes 2 elements corresponding to the composites $(f \circ g) \circ h$ and $f \circ (g \circ h)$.

For
$$k < n$$
 one has $z_k : (\mathcal{T}_{\leq n})_k \hookrightarrow (\mathcal{T}_{\leq n})_{k+1}$.

In the above example, A_{zp} is the set of coherence 2-cells between alternative ways of composing p in any bicategory.

n-operads over **Set**

Weak n-categories with strict units via iterated enrichment Mark Weber

Introduction

n-operads Contractibilit

Main Theorem

An *n*-operad is *over* **Set** when A_{\bullet} has one element. This means that the monad A does nothing at the level of objects.

For such an A and n > 1,

$$X_1 \otimes \ldots \otimes X_m = A(0 \xrightarrow{X_1} \ldots \xrightarrow{X_m} m)(0, m)$$

defines a distributive lax monoidal structure on \mathcal{G}^{n-1} **Set**, whose associated enriched categories are exactly *A*-algebras.

The case m = 1 gives a monad A_1 on \mathcal{G}^{n-1} **Set**, which encodes the structure possessed by the homs of an *A*-algebra.

Lifting theorem

Weak n-categories with strict units via iterated enrichment

Mark Weber

Introduction

Reduced *n*-operads

Main Theorem

Theorem

Let E be an accessible distributive lax monoidal structure on a cocomplete category V. Then there is, up to isomorphism, a unique lax monoidal structure E' on E_1 -Alg such that

- **1** E'_1 is the identity.
- 2 E' is distributive.
- **3** E'-Cat \cong E-Cat over $\mathcal{G}V$.

Iteration for successive enrichment?

Weak n-categories with strict units via iterated enrichment

Mark Weber

Introduction

Reduced *n*-operads

Contractibility

Main Theorem

Thus A describes the same structure in 3 ways:

- 1 Algebras for the monad A.
- Enriched categories for the associated lax monoidal structure on *Gⁿ⁻¹Set*.
- **3** Enriched categories for the lifted tensor product on A_1 -Alg.

Question: When can we iterate this by applying the same constructions to A_1 in place of A?

Obstruction to iteration :-(

Weak n-categories with strict units via iterated enrichment Mark Weber

Introduction

Reduced *n*-operads

Contractibility Main Theorem For \mathcal{B} a bicategory and $x, y \in \mathcal{B}$, $\mathcal{B}(x, y)$ is a category. But it has more structure than that. One has endofunctors

$$(-)\circ 1_x:\mathcal{B}(x,y)
ightarrow\mathcal{B}(x,y)$$
 $1_y\circ (-):\mathcal{B}(x,y)
ightarrow\mathcal{B}(x,y)$

and, for instance

$$1_y \circ ((1_y \circ 1_y) \circ (((-) \circ 1_x) \circ 1_x)) : \mathcal{B}(x,y) \to \mathcal{B}(x,y).$$

Obstruction: The presence of weak units causes the 1-operad which describes the structure enjoyed by the homs of a bicategory **NOT** to be over **Set**.

Reduced *n*-operads

Weak n-categories with strict units via iterated enrichment

Mark Weber

Introduction

Reduced *n*-operads

Contractibility Main Theorem Let U_k be the free-living k-cell. For an *n*-operad A, elements of $A_{z^rU_k}$ are the unit operations in dimension (k + r) one can associate to a k-cell in an A-algebra.

Definition

An *n*-operad A is **reduced** when for all $r, k \in \mathbb{N}$ with $r + k \leq n$, $A_{z^r U_k}$ is a singleton.

Reduced operads are over **Set** and for n > 0, if A is reduced then so is A_1 . Thus if A is a reduced operad, then A-algebras are definable by successive enrichment.

Reduced *n*-collections

Weak n-categories with strict units via iterated enrichment

Introduction

Reduced *n*-operads

Contractibility Main Theorem For a general *n*-operad *A* the sets A_p form a presheaf on the category $el(\mathcal{T}_{\leq n}1)$, which is the **underlying** *n*-collection of *A*.

For reduced A, we define its underlying **reduced** *n*-collection to be the associated presheaf on the full subcategory $\mathcal{R}_{\leq n}$ of $el(\mathcal{T}_{\leq n}1)$ consisting of those p **not** of the form $z^r U_k$.

Let $\operatorname{RGr}_{\leq n}$ be the *n*-operad for reflexive *n*-globular sets. It is subterminal. An *n*-operad (or *n*-collection) *A* is reduced iff the projection $A \times \operatorname{RGr}_{\leq n} \to \operatorname{RGr}_{\leq n}$ is an isomorphism.

Theory of reduced *n*-operads

Weak n-categories with strict units via iterated enrichment Mark Weber

Introduction

Reduced *n*-operads

Contractibility Main Theorem We have

$$\begin{array}{cccc} \operatorname{Rd-}n\text{-}\operatorname{Op} & \xrightarrow{J} n\text{-}\operatorname{Op} & & A \times \operatorname{RGr}_{\leq n} & \xrightarrow{} A \\ U^{(\operatorname{rd})} & & pb & \downarrow U & & \downarrow & po & \downarrow \pi_A \\ \operatorname{Rd-}n\text{-}\operatorname{Coll} & & & \operatorname{RGr}_{\leq n} & \xrightarrow{} PA \end{array}$$

where $F \dashv U$ and $L \dashv I$. Thus

- 1 Rd-*n*-Op is finitarily monadic over Rd-*n*-Coll.
- 2 The left adjoint to J is obtained by taking the colimit of the sequence $1 \xrightarrow{\pi} P \xrightarrow{P\pi} P^2 \rightarrow \dots$ by an appropriate application of Wolff's theorem.

Theory of reduced *n*-operads

Weak n-categories with strict units via iterated enrichment

Introduction

Reduced *n*-operads

Contractibility

For n > 0 we have functors

$$h: n\text{-}\operatorname{Op}_{/\operatorname{Set}} \longrightarrow (n-1)\text{-}\operatorname{Op} \qquad r: (n-1)\text{-}\operatorname{Op} \longrightarrow n\text{-}\operatorname{Op}_{/\operatorname{Set}}$$

where

- hA-algebra structure = the structure that the homs of a A-algebra has.
- rB-algebras = categories enriched in B-Alg using the cartesian product.

For all (n-1)-operads B, rhB = B.

Theory of reduced *n*-operads

Weak n-categories with strict units via iterated enrichment

Mark Webe

Introduction

Reduced *n*-operads

Contractibility

A pasting diagram p of dimension k > 0 can be described in terms of pasting diagrams of dimension k-1

$$p = (p_1, ..., p_m) = 0 \xrightarrow{p_1} ... \xrightarrow{p_m} m$$

and in these terms

$$hr(A)_p = \prod_{i=1}^m A_{(p_i)}.$$

Lifted tensor product \rightarrow cartesian product

Weak n-categories with strict units via iterated enrichment

Mark Weber

Introduction

Reduced *n*-operads

Contractibility Main Theorem When A is reduced one can substitute the unique unit operations of A in an appropriate way to produce functions $A_p \rightarrow A_{(p_i)}$, and thus an operad map $\nu_A : A \rightarrow hrA$.

Proposition

1 h and r restrict to an adjunction $h \dashv r$ between categories of reduced operads with unit ν .

2 ν_A induces a canonical comparison $A' \to \prod$.

Pointed reduced collections

Weak n-categories with strict units via iterated enrichment Mark Weber

Reduced *n*-operads

Contractibility

Main Theorem

The underlying **pointed reduced** *n*-collection of a reduced *n*-operad *A* includes its underlying reduced collection, but also remembers the functions $A_p \rightarrow A_{(p_i)}$.

A morphism $f : p \rightarrow q$ of k-stage trees is a commutative diagrams of sets

such that for $0 < i \le k$, $f^{(i)}$ is order preserving on the fibres of ∂_i .

Pointed reduced collections: formal definition

Weak n-categories with strict units via iterated enrichment

Introduction Reduced

Contractibility

Main Theorem

- Ω_{≤n} is the *n*-globular category of trees and morphisms between them. Its object of objects is *T*_{≤n}1.
- $\Omega_{<n}^{(\text{lin})} \subseteq \Omega_{\leq n}$ consists of the levelwise injective morphisms.
- Ψ_{≤n} ⊆ el(Ω^(lin)_{≤n}) is the full subcategory consisting of pasting diagrams not of the form z^rU_k. A pointed reduced collection is a presheaf on Ψ_{≤n}.
 - Ψ_{≤n} has two special kinds of morphisms. Those of R_{≤n} which are cosource and cotarget maps from el(Ω_{≤n}), and those corresponding to tree inclusions whose corresponding subcategory we call V_{≤n}.

Contractibility in terms of awfs's

Weak n-categories with strict units via iterated enrichment Mark Weber

Reduced *n*-operads

Contractibility

Garner's description of contractibility uses an awfs cofibrantly generated by

$$\operatorname{obj}(\operatorname{el}(\mathcal{T}_{\leq n}1))
ightarrow (n\operatorname{-Coll}_{/\operatorname{Set}})^{
ightarrow} \qquad p\mapsto \partial(p) \hookrightarrow p$$

in which ∂p is defined inductively by dimension within $n\text{-Coll}_{/\textbf{Set}}.$

A contractible *n*-collection over **Set** is an algebra of the resulting fibrant replacement monad, the data of which involves giving a choice of composition operations and coherence operations.

Reduced-contractibility

Weak n-categories with strict units via iterated enrichment Mark Weber

Contractibility

Main Theorem

Similarly contractibility for pointed reduced collections is defined using an awfs cofibrantly generated by

 $\mathcal{V}_{\leq \textit{n}} \rightarrow \mathsf{PtRd}\text{-}\textit{n}\text{-}\mathsf{Coll}^{\rightarrow}$

The effect of the arrows in $\mathcal{V}_{\leq n}$ is that the choices of operations one has for reduced-contractibility must be compatible with the process of substituting in unit operations.

Low dimensional examples

Weak n-categories with strict units via iterated enrichment

Mark Weber

Introduction

Contractibility

Main Theorem

Example

The 2-operad for Bénabou bicategories with strict units is reduced-contractible in two ways, with chosen operations obtained by bracketting completely to the left, or to the right.

$$(((((1 \circ f_4) \circ f_3) \circ 1) \circ 1) \circ f_2) \circ f_1 = ((f_4 \circ f_3) \circ f_2) \circ f_1$$

Example

The 3-operad for Gray categories may also be exhibited as reduced-contractible in two ways.

Main Theorem

Theorem

Weak n-categories with strict units via iterated enrichment

Introductio Reduced

Contractibility

Main Theorem

The initial reduced-contractible n-operad K^(su)_{≤n} exists.
 For n > 0, h(K^(su)_{≤n}) = K^(su)_{<n-1}.

Thus there is a (lax) tensor product of weak (n-1)-categories with strict units, whose enriched categories are exactly weak *n*-categories with strict units.

Proof of Main Theorem

n-categories with strict units via iterated enrichment Mark Weber

Weak

Reduced *n*-operads

Contractibility

Main Theorem

Indication of proof:

(1): Fibrant replacement is a finitary monad on PtRd-*n*-Coll. Rd-*n*-Op is also finitarily monadic over PtRd-*n*-Coll. The algebras of the coproduct of these monads, which is also finitary, is the category of reduced-contractible *n*-operads, which is thus lfp.

(2): The adjunction $h \dashv r$ works at the level of pointed reduced collections, and then lifts to an adjunction between categories of reduced-contractible operads. So this lifted h preserves initial objects since it is a left adjoint.