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Some references

(Gambino-Kock) Polynomial functors and polynomial
monads, Math. Proc. Camb. Phil. Soc., 2013.

(Batanin-Berger) Homotopy theory for algebras over
polynomial monads, ArXiv:1305.0086.

(W) Polynomials in categories with pullbacks.

(W) Operads as polynomial 2-monads.

My papers plus these slides can be found at:

https://sites.google.com/site/markwebersmaths/
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Notation & terminology

The 2-category Opd has

objects – coloured symmetric operads. So T ∈ Opd has a
set of colours I , sets of operations T (i1, ..., in; j) for
ik , j ∈ I , satisfying the usual axioms.

(I ,T )→ (I ′,T ′) – function f : I → I ′ and hom-functions
T (i1, ..., in; j)→ T ′(fi1, ..., fin; fj), satisfying axioms.

ϕ : f ⇒ f ′ – unary operations ϕi ∈ T ′(fi ; f ′i) satisfying:

ϕj f (α) = f ′(α)(ϕi1 , ..., ϕin) ∀ α ∈ T (i1, ..., in; j)

For V symmetric monoidal, the operad End(V) has colours the
objects of V and

End(V)(X1, ...,Xn;Y ) := V(X1 ⊗ ...⊗ Xn,Y ).

The category of algebras of an operad T in V is

T -Alg(V) := Opd(T ,End(V)).
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Σ-free operads

(I ,T ) is Σ-free when the Σn-actions admit no fixed points, ie

∀ α of arity n and ρ ∈ Σn, αρ = α⇒ ρ = 1n

and then the induced endofunctor T on Set/I simplifies

T (Xj)j∈I =
∐
n∈N

 ∐
α:i1,...,in→j

n∏
k=1

Xik

/
Σn =

∐
α∈B

n∏
k=1

Xik

where

B = {opn’s ofT}
/

Σn-actions
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Definition of polynomial functor

Recall, for f : I → I ′ in a category E with pullbacks, one has

E/I E/I ′
Σf //

∆f
oo

Πf (∃ iff f exponentiable)
//

⊥

⊥

Functor General process Process when E = Set
Σf compose with f sum along f ’s fibres
∆f pb along f duplicate along f ’s fibres
Πf dpb along f product along f ’s fibres

A polynomial functor over E is a composite of such functors.



Operads and
polynomial
2-monads

Mark Weber

Polynomial
monads

Morphisms of
polynomial
monads

Polynomials in
2-categories

Operads as
polynomial
2-monads

Revisiting
Σ-free operads

Definition of polynomial functor

Recall, for f : I → I ′ in a category E with pullbacks, one has

E/I E/I ′
Σf //

∆f
oo

Πf (∃ iff f exponentiable)
//

⊥

⊥

Functor General process Process when E = Set
Σf compose with f sum along f ’s fibres
∆f pb along f duplicate along f ’s fibres
Πf dpb along f product along f ’s fibres

A polynomial functor over E is a composite of such functors.



Operads and
polynomial
2-monads

Mark Weber

Polynomial
monads

Morphisms of
polynomial
monads

Polynomials in
2-categories

Operads as
polynomial
2-monads

Revisiting
Σ-free operads

Definition of polynomial functor

Recall, for f : I → I ′ in a category E with pullbacks, one has

E/I E/I ′
Σf //

∆f
oo

Πf (∃ iff f exponentiable)
//

⊥

⊥

Functor General process Process when E = Set
Σf compose with f sum along f ’s fibres
∆f pb along f duplicate along f ’s fibres
Πf dpb along f product along f ’s fibres

A polynomial functor over E is a composite of such functors.



Operads and
polynomial
2-monads

Mark Weber

Polynomial
monads

Morphisms of
polynomial
monads

Polynomials in
2-categories

Operads as
polynomial
2-monads

Revisiting
Σ-free operads

Polynomials

A polynomial from I to J in a category E with pullbacks is a
diagram

I E B Joo s p // t //

in which p is exponentiable.

For a Σ-free operad (I ,T ), B as defined above and

E = {opn’s ofT with chosen input}
/

Σn-actions

fit into a polynomial

I E B Ioo s p // t //

and its associated polynomial functor ΣtΠp∆s is T .
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The bicategory of polynomials

For E with pullbacks, one has a bicategory PolyE whose objects
are those of E , an arrow I to J is a polynomial as above, and a
2-cell from p to q is a diagram

I

E B

J

B ′E ′

tt
p1

p2 //
p3

**jj
q1

q2
// q3

44f0
��

f1
��

pb

The process of taking the corresponding polynomial functor is
the effect on 1-cells of a homomorphism of bicategories

PE : PolyE −→ CAT I 7→ E/I
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Composition (= substitution) of polynomials

• • • • • • •oo
s1 p1

//
t1
// oo

s2 p2
//

t2
//
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Composition (= substitution) of polynomials

At this point one can consider the category of triples of
morphisms (α, β, γ) as shown

• • • • • • •

•

• •

oo
s1 p1

//
t1
// oo

s2 p2
//

t2
//

α

��

��

f

��

β
//

γ

��

pb

pb

making the square with boundary (f α, p2, γ, β) a pullback.
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Composition (= substitution) of polynomials

The terminal such is the distributivity pullback of f along p2.

• • • • • • •

•

• •

oo
s1 p1

//
t1
// oo

s2 p2
//

t2
//

p

��

��

f

��

q //

r

��

dpb

pb

Πp2Σf
∼= ΣrΠq∆p r = Πp2(f )
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Composition (= substitution) of polynomials

• • • • • • •

•

• ••

oo
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//
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// oo
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��

�� ����

// //

��

pb dpb

pb



Operads and
polynomial
2-monads

Mark Weber

Polynomial
monads

Morphisms of
polynomial
monads

Polynomials in
2-categories

Operads as
polynomial
2-monads

Revisiting
Σ-free operads

Composition (= substitution) of polynomials

• • • • • • •

•

• ••

oo
s1 p1

//
t1
// oo

s2 p2
//

t2
//

��

�� ����

// //

����

s3

p3

&&

t3

��

pb dpb

pb

When p1 and p2 are identities, this reduces to the usual
pullback-composition of spans.
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Polynomial monads

A polynomial monad over E is a monad in the bicategory
PolyE .

The data in E of a unit and multiplication of a
polynomial monad amount to

I

I I

I

BE

��
1

1 //
1

��
__

s

p
//

t

??

�� ��

pb I

E ′ B ′

I

BE

��
s′

p′ //
t′

��
__

s

p
//

t

??

�� ��

pb

the polynomial (s,p,t)
composed with itself��

A Σ-free operad T determines a polynomial monad N0T over
Set.
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Morphisms of polynomial monads

The morphisms of monads relevant for us involve some
base-change. To this end note that for any f : I → I ′ in E one
has

f • : I I I I ′oo 1 1 // f // ⊣ f• : I ′ I I Ioo f 1 // 1 //

and so one can define a functor PMndE : Eop → Cat by

I 7→ Mon (PolyE(I , I )) f 7→ f• ◦ (−) ◦ f •

Definition : the category of polynomial monads

PolyMndE =

∫
PMndE
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Morphisms of polynomial monads

In E the data of a morphism of PolyMndE is

I E B I

I ′B ′E ′I ′

oo s p // t //

f��
//

t′
//

p′s′
oo
��f �� ��pb

In PolyE this is an adjunction of monads (I ,p)→ (I ′,p′)

I I ′p ;; p′ee

f • //

f•
oo ⊥

f •pf• p′+3

p f•p′f •+3

f •p p′f •+3

pf• f•p′+3

←
equiv.data

by
f • ⊣ f•
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Notation for adjunctions of monads

Adjunctions of monads make sense in any bicategory, and in
particular in CAT an adjunction F : (E ,T )→ (F , S) consists
of

E FT ;; Scc

F! //

F∗
oo ⊥

F c : F!T SF!+3

F l : TF ∗ F ∗S+3

in which F l (resp. F c) endows F ∗ (resp. F!) with the structure
of a lax (resp. colax) monad morphism. To give F l is to give a
lifting of F ∗ to S-Alg→ T -Alg.

Apply PE to the previous slide gives an adjunction of monads
where

F! = Σf F ∗ = ∆f .
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Theorem

(J. Kock, Szawiel-Zawadowski)

1 T 7→ N0T gives an equivalence between the category of
Σ-free operads and the full subcategory of PolyMndSet
consisting of those polynomial monads

I E B Ioo s p // t //

in which p has finite fibres.

2 For all T , T -Alg ∼= T -Alg(Set) where T = PSet(N0T ).
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Polynomials in 2-categories

The above story admits a straightforward analogue when E is
instead a 2-category with pullbacks:

All the universal properties used (ie for pb’s and dpb’s)
have an evident 2-dimensional aspect.

The homs of PolyE are 2-categories, so PolyE is what we
shall call a 2-bicategory (ie a Cat-enriched bicategory).

PE is now a homomorphism of 2-bicategories

PolyE −→ 2-CAT

Important case for us: E = Cat.
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Examples

Denoting P the permutation category and P∗ the based
version, one has a polynomial

1 P∗ P 1oo UP
// //

which underlies a polynomial monad, and the corresponding
2-monad is denoted S.

For a category A, objects of SA are
finite sequences of objects of A, and morphisms are
permutations labelled by morphisms of A as in

a1 a2 a3 a4

b1 b2 b3 b4

((
f1

��f2 �� f3zz
f4
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Examples

Noting N = ob(P) and denoting N∗ = ob(P∗) one has a
polynomial

1 N∗ N 1oo UN
// //

which underlies a polynomial monad over Set. Regarding this
as a (componentwise discrete) polynomial monad in Cat, the
corresponding 2-monad M is the sub-2-monad of S determined
by the levelwise maps.
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Examples

Denoting B the braid category and B∗ the based version, one
has a polynomial

1 B∗ B 1oo UB
// //

which underlies a polynomial monad, and the corresponding
2-monad is denoted B. For a category A, objects of BA are
finite sequences of objects of A, and morphisms are braids
labelled by morphisms of A as in

a1 a2 a3 a4

b1 b2 b3 b4

++f1
++

f2

�� f3{{f4
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2-monad algebras and algebra morphisms

axiom holds
up to

S-algebra S-morphism

strict equality symmetric
strict monoidal
category

symmetric strict
monoidal functor

pseudo coherent
isomorphism

symmetric
monoidal cate-
gory

symmetric
(strong) monoidal
functor

(co)lax coherent 2-
cell

functor
(co)operad

symmetric (co)lax
monoidal functor

Internal structure via (co)lax algebra morphisms

V : symmetric monoidal category = pseudo S-algebra.
Lax S-morphism 1→ V is a commutative monoid in V.
Colax S-morphism 1→ V is a cocommutative comonoid in V.
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2-monad algebras and algebra morphisms

axiom holds
up to

M-algebra M-morphism

strict equality strict monoidal
category

strict monoidal
functor

pseudo coherent
isomorphism

monoidal cate-
gory

(strong) monoidal
functor

lax coherent 2-
cell

lax monoidal
category

lax monoidal func-
tor

Internal structure via (co)lax algebra morphisms

V : monoidal category = pseudo M-algebra.
Lax M-morphism 1→ V is a monoid in V.
Colax M-morphism 1→ V is a comonoid in V.
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2-monad algebras and algebra morphisms

axiom holds
up to

B-algebra B-morphism

strict equality braided strict
monoidal cate-
gory

braided strict
monoidal functor

pseudo coherent
isomorphism

braided
monoidal
category

braided (strong)
monoidal functor

(co)lax coherent 2-
cell

braided functor
(co)operad

braided (co)lax
monoidal functor

Internal structure via (co)lax algebra morphisms

V : braided monoidal category = pseudo B-algebra.
Lax B-morphism 1→ V is a commutative monoid in V.
Colax B-morphism 1→ V is a cocommutative comonoid in V.
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Internal algebras

Definition

Given an adjunction F : (K,T ) −→ (L, S) of 2-monads and an
S-algebra A, the category T -Alg(A) of algebras of T internal
to A is the category of lax morphisms 1→ F ∗A and algebra
2-cells between them.

Examples

When F is the identity on S, B or M one recovers the category
of commutative monoids in a symmetric or braided monoidal
category, and that of monoids in a monoidal category.

Examples

When F! = F ∗ = 1Cat and F l = F c is the inclusion M ↪→ S
(resp. M ↪→ B) one recovers the category of monoids in a
symmetric (resp. braided) monoidal category.
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Constructing a polynomial 2-monad from an operad

Let T be an operad with set of colours I . There’s a functor

OpT : Pop −→ Set n 7→ {n-ary opn’s of T}

so we define

BT =

∫
OpT ET =

∫
OpT (U

P)op

giving an adjunction NT → S of polynomial monads:

I ET BT I

1PP∗1

oo // //

��
////oo

�� ��
dfib
��

pb
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Theorem

1 T 7→ NT→S gives an equivalence between the category
Opd and the full subcategory of PolyMndCat/S consisting
of those

I E B I

1PP∗1

oo // //

��
////oo

�� ��
d
��

pb

such that d is a discrete fibration.

2 For any symmetric monoidal category V and operad T ,
T̃ -Alg(V) ∼= T -Alg(V) where T̃ = PCat(N (T )).
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Variants of this result

1 The full subcategory of PolyMndCat/S determined by
I = 1 (no condition on d) is the category of Kelly’s clubs.
Thus PolyMndCat/S contains clubs and operads as full
subcategories.

2 In a similar way non-Σ-operads are identified within
PolyMndCat/M, and braided operads are identified within
PolyMndCat/B.

3 An adjunction of polynomial monads into S together with
the structure of a split fibration on d , is the same as
giving a Cat-operad.
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T -algebras vs T̃ -algebras

Strict C̃om-algebras are symmetric strict monoidal categories
whereas algebras of Com in Cat are symmetric strict monoidal
categories whose symmetries are identities.

An Ãss-algebra structure on a category amounts to a tensor
product functor ⊗ρ : Vn → V for each ρ ∈ Σn, together with
isomorphisms ⊗ρ1cρ2

∼= ⊗ρ1ρ2 (where cρ2 : Vn → Vn permutes
the factors according to ρ2), and the usual coherences for
monoidal categories adapted to this situation.

In general: T̃ -algebras are weakly equivariant morphisms of
operads T → End(Cat).
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isomorphisms ⊗ρ1cρ2
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T vs T̃

For any operad (I ,T ), applying PCat to

I

E
[1]
T B

[1]
T

I

BTET

uu

s
[1]
T

p
[1]
T //

t
[1]
T

))55

tT//
pT

sT

ii
dET

��

dBT

��
cET
��

cET
��

αET'/
αBT'/

gives a 2-cell αT of 2-monads whose coidentifier qT

T̃
[1]
Σ T̃ T

dT //

cT
//

qT //αT��

is constructed as in End(Cat/I ), T -algebras are algebras of T
in Cat, and qT induces the inclusion of operad morphisms
T → End(Cat) amongst the weakly-equivariant ones.
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[1]
Σ T̃ T

dT //
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//
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is constructed as in End(Cat/I )

, T -algebras are algebras of T
in Cat, and qT induces the inclusion of operad morphisms
T → End(Cat) amongst the weakly-equivariant ones.
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T vs T̃
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��
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cET
��
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gives a 2-cell αT of 2-monads whose coidentifier qT

T̃
[1]
Σ T̃ T

dT //

cT
//

qT //αT��

is constructed as in End(Cat/I ), T -algebras are algebras of T
in Cat

, and qT induces the inclusion of operad morphisms
T → End(Cat) amongst the weakly-equivariant ones.
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T in the Σ-free case

When T is Σ-free, qT can be obtained by applying PCat to

I

E
[1]
T B

[1]
T

IBTET

π0ET π0BT

{{

s
[1]
T

p
[1]
T //

t
[1]
T

##//
tT

//
pTsT

oo
�� ���� ��

αET+3
αBT+3

ff

π0sT

π0pT
//

π0tT

88

qET
��

qBT
��

which is a coidentifier in PolyCat(I , I ). The bottom polynomial
monad is the Kock/Szabiel-Zawadowski polynomial for T .
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Review of Lack model structures

Cat has a model structure in which the equivalences are
equivalences of categories, and fibrations are functors with the
isomorphism lifting property (the “isofibrations”). This is
known as the “folk”, “natural” or “categorical” model structure
on Cat.

It can be expressed in terms of Cat’s 2-category
structure and some finite 2-categorical limits and colimits
therein, and so one such a model structure on any 2-category
K with finite limits and colimits. If K is a locally finitely
presentable 2-category and T a finitary 2-monad on K, then
one obtains a transferred model structure on T -Algs, which we
call the Lack model structure on T -Algs. By definition, a
morphism in T -Algs is a fibration or weak equivalence in
T -Algs iff it is sent to one by the forgetful UT : T -Algs → K.
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Theorem

If T is Σ-free then qT : T̃ → T induces a

1 Quillen equivalence between T -Algs and T̃ -Algs with
respect to the Lack model structures.

2 biequivalence between T -Alg and T̃ -Alg.

3 biequivalence between Ps-T -Alg and Ps-T̃ -Alg.
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Some references

(Gambino-Kock) Polynomial functors and polynomial
monads, Math. Proc. Camb. Phil. Soc., 2013.

(Batanin-Berger) Homotopy theory for algebras over
polynomial monads, ArXiv:1305.0086.

(W) Polynomials in categories with pullbacks.

(W) Operads as polynomial 2-monads.

(W) Internal algebra classifiers as codescent objects of
crossed internal categories.

(W) Algebraic Kan extensions along morphisms of internal
algebra classifiers.

My papers plus the slides for both talks can be found at:

https://sites.google.com/site/markwebersmaths/
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A polynomial from I to J in a category (2-category) E with
pullbacks is a diagram

I E B Joo s p // t //

in which p is exponentiable. The associated polynomial
functor E/I → E/J is ΣtΠp∆s .

Polynomials in E form a bicategory (2-bicategory) PolyE and
taking the associated polynomial functor is the effect on 1-cells
of a homomorphism

PE : PolyE −→ CAT PE : PolyE −→ 2-CAT
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Today we shall focus on polynomial monads in Cat

I E B Ioo s p // t //

in which I is discrete, E and B are groupoids, and p is a
discrete fibration with finite fibres. Let’s call these operadic
polynomial monads.

Applying PCat to a morphism of such

I E B I

I ′B ′E ′I ′

oo s p // t //

f��
//

t′
//

p′s′
oo
��f �� ��pb

produces an adjunction of 2-monads.
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An adjunction of 2-monads F : (K,T ) → (L,S) consists of
1 A 2-category K and a 2-monad T on K.

2 A 2-category L and a 2-monad S on L.
3 An adjunction F! ⊣ F ∗ : L → K.

4 A lifting of F ∗ : L → K to the 2-categories of algebras S
and T . This is equivalent to giving compatible 2-natural
transformations

F c : F!T ⇒ SF! F l : TF ∗ ⇒ F ∗S

In such a formal set up one defines a T -algebra internal to
an S-algebra A to be a lax morphism 1 → F ∗A of T -algebras
(given a terminal object 1 ∈ K).
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An operad T with set of colours I determines

I ET BT I

1PP∗1

oo // //

��
////oo

�� ��
dfib
��

pb

and thus an adjunction of 2-monads

ArT : (Cat/I , T̃ ) −→ (Cat,S)

an algebra of T in a symmetric monoidal category V in the
usual sense, corresponds to a T̃ -algebra internal to V (viewed
as a pseudo S-algebra).
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Goals

For an adjunction F : (K,T ) → (L,S) of 2-monads coming
from a morphism of operadic polynomial monads, want to
explain:

1 How to define ST – the universal S-algebra containing
an internal T -algebra.

2 How to obtain an explicit description of ST from the data
of F .

3 How to use these “internal algebra classifiers” to give
explicit descriptions of various free constructions as left
Kan extensions.



Operads and
polynomial
2-monads II

Mark Weber

Review/Goals

Internal
algebra
classifiers

Computing

ST

Free
constructions

Goals

For an adjunction F : (K,T ) → (L,S) of 2-monads coming
from a morphism of operadic polynomial monads, want to
explain:

1 How to define ST – the universal S-algebra containing
an internal T -algebra.

2 How to obtain an explicit description of ST from the data
of F .

3 How to use these “internal algebra classifiers” to give
explicit descriptions of various free constructions as left
Kan extensions.



Operads and
polynomial
2-monads II

Mark Weber

Review/Goals

Internal
algebra
classifiers

Computing

ST

Free
constructions

Goals

For an adjunction F : (K,T ) → (L,S) of 2-monads coming
from a morphism of operadic polynomial monads, want to
explain:

1 How to define ST – the universal S-algebra containing
an internal T -algebra.

2 How to obtain an explicit description of ST from the data
of F .

3 How to use these “internal algebra classifiers” to give
explicit descriptions of various free constructions as left
Kan extensions.



Operads and
polynomial
2-monads II

Mark Weber

Review/Goals

Internal
algebra
classifiers

Computing

ST

Free
constructions

Revisiting ∆+

Write u : 1 → ∆+ for the unique lax monoidal functor whose
underlying functor picks out the terminal object.
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Write u : 1 → ∆+ for the unique lax monoidal functor whose
underlying functor picks out the terminal object. This is the
universal monoid in a monoidal category in 2 senses:
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Revisiting ∆+

Write u : 1 → ∆+ for the unique lax monoidal functor whose
underlying functor picks out the terminal object. This is the
universal monoid in a monoidal category in 2 senses:

Composition with u induces

{strict monoidal functors ∆+ → V}∼= {monoids in V}

2-naturally with respect to all strict monoidal categories V.
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Revisiting ∆+

Write u : 1 → ∆+ for the unique lax monoidal functor whose
underlying functor picks out the terminal object. This is the
universal monoid in a monoidal category in 2 senses:

Composition with u induces

{strong monoidal functors ∆+ → V}≃{monoids in V}

pseudonaturally with respect to all monoidal categories V.
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Revisiting ∆+

Write u : 1 → ∆+ for the unique lax monoidal functor whose
underlying functor picks out the terminal object. This is the
universal monoid in a monoidal category in 2 senses:

Composition with u induces

{strong monoidal functors ∆+ → V}≃{monoids in V}

pseudonaturally with respect to all monoidal categories V.

Denoting M = 2-monad on Cat for monoidal categories,

Nerve(∆+) = ... M31 M21 M1Mη1oo
µ1 //

M(!)
//

µM1 //
Mµ1

//

M2(!)
//
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Definition

Given F : (K,T ) → (L,S) the internal T -algebra classifier
consists of a strict S-algebra ST and an internal T -algebra
u : 1 → F ∗(ST ), such that for all strict S-algebras X , the
functor

S-Algs(S
T ,X ) −→ T -Algl(1,F

∗X )

given by precomposition with u is an isomorphism of categories.

In the case (L, S) = (K,T ) = (Cat,M) and F is the identity,
we have

MM = ∆+
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Proposition

If F comes from a morphism of operadic polynomial monads,
then ST exists and composition with u : 1 → F ∗(ST ) gives
pseudonatural equivalences

Ps-S-Alg(ST ,X ) ≃ Ps-T -Algl(1,F
∗X )

Proof-ideas

Operadicity implies S is finitary, and so S-Algs is lfp. The
2-functor X 7→ T -Algl(1,F

∗X ) is limit-preserving and thus
representable. For weak universal property of ST , use the strict
universal property + Power-coherence + flexibility of ST .
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Regarding X 7→ F ∗X as the effect on objects of a 2-functor

S-Algs −→ T -Algl,

ST is the effect on 1 of its left adjoint.

In the case S = T and
F = identity, the computation of such left adjoints was
considered in

Lack, Codescent objects and coherence.

Adapting this to our more general situation gives the formula

ST = CoDesc

... SF!T 21 SF!T1 SF!1SF!η
T
1

oo

µS
F!X

S(F c
1 ) //

SF!(!)
//

µS
F!T1S(F

c
T1) //

SF!µ
T
1

//

SF!T (!)
//


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Definition of codescent object

If X : ∆op → K is a simplicial object in a 2-category K and
Y ∈ K, then a codescent cocone for X with vertex Y
consists of (q0, q1)

... X2 X1 X0 Ys0oo
d1 //

d0
//

d2 //
d1 //

d0
//

q0 //

q1:q0d1⇒q0d0

such that

q1s0 = id (q1d0)(q1d2) = (q1d1)

The universal such is denoted Y = CoDesc(X ) and is called
the codescent object of X .
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Example

Every category is the codescent object of its nerve, regarded as
a componentwise-discrete category object in Cat, and q0 in
this case is the inclusion of objects.

Example

Regarding a 2-category X as a category object in Cat

... X2 X1 X0 (X0 discrete)s0oo
d1 //

d0
//

d2 //
d1 //

d0
//

one has CoDesc(X ) = π0∗X .
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A double category is a category object X : ∆op → Cat in
Cat. We regard the arrows of X0 as vertical arrows, and the
objects of X1 as horizontal arrows.

Definition

A crossed double category is a double category X together
with the structure of a split opfibration on d0 : X1 → X0 such
that

X0 X1 X2

X0

s0 // oo d1

d2
0����1

d0
��

are morphisms of split opfibrations over X0.
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To give a cleavage for d0 : X1 → X0 is to give, for all f and g ,
distinguished squares

w x

yz

f //

g
��
//

r

��l
κ

One has a 2-category Cnr(X ) with objects those of X , arrows,
horizontal composition and 2-cells as in:

x

a y

g
��

f
//

x

a y

b z

g1
�� f1 //

g2�� f2 //c
��

//
κ

g3

��

f3

::

x

a y

g1
�� f1 //

b y

g2

��

f2
//

�� α
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Examples

When the horizontal category = ∆, vertical category is a
groupoid, and d0 : X1 → X0 a discrete opfibration then
Cnr(X ) is a crossed simplicial group à la Loday-Fiedorowicz.

Examples

When F : (Cat/I ,T ) → (Cat/I ′,S) comes from a morphism of
operadic polynomial monads, then

... SF!T
21 SF!T1 SF!1SF!η

T
1

oo

µS
F!X

S(F c
1 ) //

SF!(!)
//

µS
F!T1S(F

c
T1) //

SF!µ
T
1

//

SF!T (!)
//

is componentwise a crossed double category.
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Theorem

For X a crossed double category

CoDesc(X ) = π0∗Cnr(X )

Remarks on generality

This result works if you replace Cat by the 2-category Cat(E)
of categories internal to E , where E is a category with pullbacks
and pullback-stable reflexive coequalisers. The statement

CoDesc(X ) = CoDesc(Cnr(X))

is even more general, just requiring pullbacks in E .
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Example

SS, the free symmetric monoidal category containing a
commutative monoid, is computed as

π0∗Cnr

... S31 S21 S1Sη1oo
µ1 //

S(!)
//

µS1 //
Sµ1

//

S2(!)
//



The crossed double category has horizontal category = ∆+,
vertical category = the permutation category, and squares are
squares that commute in Setfin. The result SS = Setfin and
the crossed structure comes from the unique factorisation of
any function f : m → n between finite ordinals as f = ϕρ,
where ρ is bijective, ϕ is order preserving, and ρ is
order-preserving on the fibres of ρ.
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Braided version of the previous example

Using our formula for BB, and the work of Lavers (The theory
of vines) one obtains the category of vines as the free braided
monoidal category containing a commutative monoid.

This
category has natural numbers as objects, and morphisms which
look like

• • •

• •
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Symmetric monoidal categories from operads

For F = ArT : (Cat/I , T̃ ) → (Cat,S), ST̃ has the universal
properties

S-Algs(S
T̃ ,V) ∼= T -Alg(V) Ps-S-Alg(ST̃ ,V) ≃ T -Alg(V)

By the formula ST̃ has as objects finite sequences of colours,
and morphisms functions between indexing sets whose fibres
are labelled by the operations of T . For example:

β1 β2 β3 β4

i1 i2 i3 i4 i5 i6

j1 j2 j3 j4
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Braided Feynman categories?

Theorem (with M. Batanin and J. Kock)

A Feynman category (à la Kaufmann-Ward) is a category

which is equivalent to ST̃ for some operad T .

For a braided operad T , the explicit description of BT̃ is similar

to ST̃ except with indexing vines replacing indexing functions
in the description of the morphisms.
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Free properads

Let C be the groupoid such that symmetric bicoloured
collections are functors out of C. Let Prpd be the operad for
properads. There’s an operad morphism ι : C → Prpd.

For V
symmetric monoidal closed and cocomplete,

A symmetric bicoloured collection in V “is” a symmetric
strong monoidal functor S(C) → V.
A properad in V is a symmetric strong monoidal functor

SP̃rpd → V.
The free properad on a symmetric bicoloured collection is
computed by left Kan extending along

Sι̃ : S(C) −→ SP̃rpd
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Modular envelope

Let CycOp be the operad for cyclic operads, ModOp be the
operad for modular operads and ι : CycOp → ModOp be the
inclusion.

For V symmetric monoidal closed and cocomplete,

A cyclic operad in V is a symmetric strong monoidal

functor SC̃ycOp → V.
A modular operad in V is a symmetric strong monoidal

functor SM̃odOp → V.
The modular envelope of a cyclic operad is obtained by
left Kan extending along

Sι̃ : SC̃ycOp −→ SM̃odOp
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Colimits in categories of algebras of an operad

Let C be a category, T be an operad and ι : C⊗ T → T be
the “projection”, where ⊗ is the Boardman-Vogt tensor
product.

For V symmetric monoidal closed and cocomplete,

A functor C → T -Alg(V) can be regarded as a symmetric

strong monoidal functor SC̃⊗T → V.
Computing the colimit of such a functor can be regarded
as the process of left Kan extending along Sι̃. This gives a
formula for such colimits in terms of colimits in V.

Questions

Why do the left Kan extensions in such cases produce
symmetric strong monoidal functors? More generally, when is
the left Kan extension of a pseudo morphism also a pseudo
morphism?
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Given adjunctions of 2-monads

(K1,T1) (K2,T2)

(L,S)

G //

F2����F1

one regards S as the type of ambient structure, T2 and T1 as
the types of internal structures. One has forgetful functors

UA : T2-Alg(A) −→ T1-Alg(A)

for all S-algebras A.
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Theorem

If all these 2-monads arise from operadic polynomial monads
and A is algebraically cocomplete, then the left adjoint to UA is
computed by left Kan extending along the strict S-algebra
morphism SG : ST1 → ST2 .

Algebraic cocompleteness says that pointwise left Kan
extensions into in L into A are compatible with the action
SA → A. There is a general result
(Melliès-Tabareau-Koudenburg) that pointwise left Kan
extending a pseudo morphism into such an A, along an algebra
morphism whose algebra square is exact in the sense of Guitart,
is again a pseudo morphism.
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To apply the Melliès-Tabareau-Koudenburg result we need to
know that the algebra square for SG is exact.

This follows from
the following general result.

Theorem

Suppose that S is a pullback square

P B

CA

//

g

��
//

f

��
pb

of crossed double categories in which g is an internal discrete
fibration and f0 is an opfibration. Then CoDesc(S) is exact.
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