
Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Lax monoidal categories and higher operads

Mark Weber

CT2010 Genova June 2010

joint in part with
Michael Batanin and Denis-Charles Cisinski



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

For any category V one may consider the category GV of
graphs enriched in V .

objects : GV → Set

In particular

G1 = Set GSet = Graph

the category of n-globular sets is GnSet, and GGlob ∼= Glob.

Batanin: higher categorical structures are algebras of monads
on GnSet or Glob.

Useful abstraction: globular higher category theory is about
monads defined on GV over Set.The monads of interest come
from distributive lax monoidal structures on V .
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Outline

1 Distributive multitensors and monads

2 Contractible operads and contractible multitensors

3 The Trimble definition á la Cheng

4 Gray and Crans tensor products from operads

5 Free products of higher categories

6 Properties of free products relevant for an inductive
definition of semi-strict n-category
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Multitensors

Let V be a category. We shall use the following notations

E
1≤i≤n

Zi E
i

Zi E (Z1, ...,Zn)

for the same thing: the tensor product of the objects Z1,...,Zn

of V . The tensor product itself is denoted as E . We denote by
E1 the unary tensor product.

The additional data for a lax monoidal structure, that is to say
a multitensor, on V is

uZ : Z → E1Z σZij
: E

i
E
j

Zij → E
ij

Zij
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Multitensors

and this data should be natural in the Z ’s and satisfy

E
i

Zi

u E
i //

1
��

E1 E
i

Zi

σ
���������

E
i

Zi

=

E
i

E
j

E
k

Zijk
σ E

k //

E
i
σ

��

E
ij

E
k

Zijk

σ

��
E
i

E
jk

Zijk
σ

// E
ijk

Zijk

=

E
i

E1Zi

σ
��<<<<<<<
E
i

Zi

1
��

E
i
u

oo

E
i

Zi

=

The multitensor is distributive when for all n the functor

V n → V (X1, ...,Xn) 7→ E (X1, ...,Xn)

preserves coproducts in each variable.



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Multitensors

and this data should be natural in the Z ’s and satisfy

E
i

Zi

u E
i //

1
��

E1 E
i

Zi

σ
���������

E
i

Zi

=

E
i

E
j

E
k

Zijk
σ E

k //

E
i
σ

��

E
ij

E
k

Zijk

σ

��
E
i

E
jk

Zijk
σ

// E
ijk

Zijk

=

E
i

E1Zi

σ
��<<<<<<<
E
i

Zi

1
��

E
i
u

oo

E
i

Zi

=

The multitensor is distributive when for all n the functor

V n → V (X1, ...,Xn) 7→ E (X1, ...,Xn)

preserves coproducts in each variable.



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Categories enriched in a multitensor

A category enriched in (V ,E ) consists of X ∈ GV

together
with composition maps

κxi : E
i

X (xi−1, xi )→ X (x0, xn)

for all n ∈ N and sequences (x0, ..., xn) of objects of X , such
that

X (x0, x1) E1X (x0, x1)
u //

X (x0, x1)

κ
��id %%LLLLLLLLL

E
i

E
j

X (x(ij)−1, xij) E
ij

X (x(ij)−1, xij)σ //

X (x0, xmnm)

κ

��
E
i

X (x(i1)−1, xini
)

E
i
κ

��

κ
//

commute, where 1≤i≤m, 1≤j≤ni and x(11)−1=x0.
We denote by E -Cat the category of E -categories.
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Example

Let V be a symmetric monoidal category and

(An : n ∈ N)

be the underlying collection of an operad in V .

Then

E
i

Xi := An ⊗ X1 ⊗ ...⊗ Xn

defines a multitensor on V .

1-object E -categories = A-algebras

When V = Set this construction gives a bijection between
distributive multitensors and non-symmetric operads.
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Example

Let T be a monad on V a category with finite products.

Define the multitensor T× on V by

T×
i

Xi =
∏
i

TXi

It is distributive when V is and T preserves coproducts, and

T×-Cat ∼= (V T ,×)-Cat
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Multitensor to monad construction

Fundamental Construction

From a distributive multitensor (V ,E ) one obtains a monad on
GV over Set, with underlying endofunctor

ΓEX (a, b) =
∐

a=x0,...,xn=b

E
i

X (xi−1, xi )

and whose category of algebras is E -Cat.
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Strict n-category monads made easy

Examples

One obtains the monads T≤n on GnSet whose algebras are
strict n-categories as follows:

T≤0 = 1Set T≤n+1 = ΓT ×≤n

All the formal categorical properties one knows about T≤n can
be recovered from general results concerning what G, Γ and
(−)× preserve.
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2-functoriality of Γ

The process

Distributive multitensor on V 7→ Monad on GV over Set

is functorial in some interesting ways.

One can define
DISTMULT to be the full sub-2-category of Lax-M-Alg whose
objects are the distributive lax monoidal categories and then
one can define a 2-functor

Γ : DISTMULT→ MND(CAT/Set)

Thus in particular, any monoidal monad on a distributive lax
monoidal V gives rise to a distributive law between monads
defined on GV .
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2-functoriality of Γ

Dually, one may define a 2-category OpDISTMULT, whose
one-cells are coproduct preserving oplax monoidal functors, and
a 2-functor

Γ : OpDISTMULT→ OpMND(CAT/Set)

Thus any coproduct preserving opmonoidal monad on a
distributive lax monoidal V gives rise to a distributive law
between monads defined on GV .
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2-functoriality of Γ

Example

(E. Cheng) From the inductive description of T≤n given above
one obtains a distibutive law

G(T≤n)Γ(
∏

)→ Γ(
∏

)G(T≤n)

for all n, between monads on GnSet, with composite monad
Γ(

∏
)G(T≤n) = T≤(n+1).
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Characterising the image of Γ

It is possible to characterise abstractly monads of the form
(GV , ΓE ). To do this we must introduce two properties of
monads: distributivity and path-likeness.

When V has an initial object ∅ any sequence of objects
(Z1, ...,Zn) of V may be regarded as a V -graph

obj = {0, ..., n} Hom(i − 1, i) = Zi

and all other homs are ∅.

Given a monad T on GV over Set one defines a multitensor

T
i

Zi := T (Z1, ...,Zn)(0, n)

on V .
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Characterising the image of Γ

Definition

Let V have coproducts. A monad T on GV over Set is
distributive when T is distributive as a multitensor.

Given an enriched graph X and objects a, b of X , then given
coproducts in V one has a canonical map

φX ,a,b :
∐

a=x0,...,xn=b

T
i

X (xi−1, xi )→ TX (a, b)

and one can make

Definition

The monad T is path-like when φX ,a,b is an isomorphism for all
X , a and b.
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Characterising the image of Γ

Note: if T is path-like then T -Cat ∼= GV T .

Theorem

Let V have coproducts. Then a monad T on GV over Set is
of the form (GV , ΓE ) iff it is

1 distributive

2 path-like

and in this case E is recaptured as T .
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Multitensors to operads

Given a cartesian monad T , recall that a T -operad is a
cartesian monad morphism φ : A→ T . Similarly given a
cartesian multitensor E , one may define an E -multitensor to be
a cartesian multitensor map into E .

Corollary

Let V be lextensive and E a cartesian multitensor on V . Then
Γ and (−) induce

E -multitensors ' ΓE -operads over Set.

Main case of interest: E = T ×≤n.
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Contractibility

Let I be a class of maps in a category V . Recall that a
morphism in V is a trivial I-fibration when it satisfies RLP
with respect to all elements of I.

We shall say that a natural
transformation between functors into V is a trivial I-fibration
when each of its components is such.

When V has an initial object any class I determines a class I+

of maps of GV containing

∅ → ( ) (i) : (S)→ (B)

where i ∈ I.



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Contractibility

Let I be a class of maps in a category V . Recall that a
morphism in V is a trivial I-fibration when it satisfies RLP
with respect to all elements of I. We shall say that a natural
transformation between functors into V is a trivial I-fibration
when each of its components is such.

When V has an initial object any class I determines a class I+

of maps of GV containing

∅ → ( ) (i) : (S)→ (B)

where i ∈ I.



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Contractibility

Let I be a class of maps in a category V . Recall that a
morphism in V is a trivial I-fibration when it satisfies RLP
with respect to all elements of I. We shall say that a natural
transformation between functors into V is a trivial I-fibration
when each of its components is such.

When V has an initial object any class I determines a class I+

of maps of GV containing

∅ → ( ) (i) : (S)→ (B)

where i ∈ I.



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Contractibility

Starting with the empty class of maps in Glob iterating (−)+

and taking the union, produces the class I∞ containing the
inclusion of the boundary of the free-living n-cell for each
n ∈ N.

For the finite dimensional versions – classes in GnSet denoted
I≤n – start with the class

{∅ → 1, 2→ 1}

in Set and successively apply (−)+.

Leinster: An n-operad is contractible when it is a trivial
I≤n-fibration.
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Contractible multitensors and operads

Proposition

Let E be a T≤n-multitensor. Then E is a contractible
n-multitensor iff ΓE is a contractible (n+1)-operad.
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Path space functor

There are two basic ingredients for the Trimble definition. The
first is the path space functor

P : Top→ GTop

and this arises quite canonically in our setting.
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Background from topology

For any space X the reduced suspension of X , is defined as the
pushout

X +X I×X

σX .1+1

//

����
//

and so we get

Top Top•
σ //

h
oo ⊥

where h(a,X , b) is the space of paths in X from a to b.
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Path space functor

On the categorical side one has the 2-adjunction

CAT/Set CAT
(−)• //

G
oo ⊥

where for f : A→Set, A• is the category of bipointed objects in
A.

The path space functor P is the composite

Top GTop• GTop
unit // Gh //

and from this description P is evidently a right adjoint.
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Operad action on path-spaces

The second basic ingredient for the Trimble definition is a
non-symmetric contractible topological operad A which acts on
the path space functor.

To say that A acts on P is to say that
P factors as

Top A-Cat GTop
PA // UA

//

Since P is a right adjoint, PA is also a right adjoint by the
Dubuc adjoint triangle theorem.
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Trimble’s inductive machine

(Q,V ) 7→ (Q(+),V (+))

Applies to pairs (Q,V ) consisting of a distributive category V
and a product preserving Q : Top→ V .

Regarding Q as a (strong) monoidal functor
(Top,A)→ (V ,QA), and applying Γ gives a monad morphism

(G(Top), Γ(A))→ (GV , Γ(QA))

with underlying functor GQ.
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Trimble’s inductive machine

By formal monad theory this monad morphism amounts to
giving a lifting Q as indicated in the commutative diagram

Top A-Cat QA-Cat

GVG(Top)

PA // Q //

UQA

����

G(Q)
//

P ''OOOOOOOOOO

and then one defines

Q(+) = QPA V (+) = QA-Cat

Iterating this starting from π0 : Top→ Set produces the
fundamental n-groupoid functor from Top into the category of
Trimble n-categories.
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Cheng’s theorem

Theorem

(E. Cheng) Trimble n-categories are Batanin n-categories.

(indication of proof):
The monads Trmn are given inductively as

Trm0 = 1Set Trmn+1 = Γ(πnA)

by construction, and the cartesian multitensor map A→
∏

can
be used to construct the n-operad structure. Contractibility in
the topological setting and contractibility in the globular
setting are compatible because of how P arises, and this
together with the general theory enables one to verify the
contractibility of Trmn.



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Cheng’s theorem

Theorem

(E. Cheng) Trimble n-categories are Batanin n-categories.

(indication of proof):

The monads Trmn are given inductively as

Trm0 = 1Set Trmn+1 = Γ(πnA)

by construction, and the cartesian multitensor map A→
∏

can
be used to construct the n-operad structure. Contractibility in
the topological setting and contractibility in the globular
setting are compatible because of how P arises, and this
together with the general theory enables one to verify the
contractibility of Trmn.



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Cheng’s theorem

Theorem

(E. Cheng) Trimble n-categories are Batanin n-categories.

(indication of proof):
The monads Trmn are given inductively as

Trm0 = 1Set Trmn+1 = Γ(πnA)

by construction,

and the cartesian multitensor map A→
∏

can
be used to construct the n-operad structure. Contractibility in
the topological setting and contractibility in the globular
setting are compatible because of how P arises, and this
together with the general theory enables one to verify the
contractibility of Trmn.



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Cheng’s theorem

Theorem

(E. Cheng) Trimble n-categories are Batanin n-categories.

(indication of proof):
The monads Trmn are given inductively as

Trm0 = 1Set Trmn+1 = Γ(πnA)

by construction, and the cartesian multitensor map A→
∏

can
be used to construct the n-operad structure.

Contractibility in
the topological setting and contractibility in the globular
setting are compatible because of how P arises, and this
together with the general theory enables one to verify the
contractibility of Trmn.



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Cheng’s theorem

Theorem

(E. Cheng) Trimble n-categories are Batanin n-categories.

(indication of proof):
The monads Trmn are given inductively as

Trm0 = 1Set Trmn+1 = Γ(πnA)

by construction, and the cartesian multitensor map A→
∏

can
be used to construct the n-operad structure. Contractibility in
the topological setting and contractibility in the globular
setting are compatible because of how P arises,

and this
together with the general theory enables one to verify the
contractibility of Trmn.



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Cheng’s theorem

Theorem

(E. Cheng) Trimble n-categories are Batanin n-categories.

(indication of proof):
The monads Trmn are given inductively as

Trm0 = 1Set Trmn+1 = Γ(πnA)

by construction, and the cartesian multitensor map A→
∏

can
be used to construct the n-operad structure. Contractibility in
the topological setting and contractibility in the globular
setting are compatible because of how P arises, and this
together with the general theory enables one to verify the
contractibility of Trmn.



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Recall that given an (n+1)-operad A over Set, A is an
n-multitensor, so in particular gives a lax monoidal structure on
GnSet, and A-categories are the same as A-algebras.

Example

Let A be the 3-operad for Gray categories. Then A is a lax
monoidal structure on 2-globular sets and A-categories are Gray
categories. Note that A1 is the monad for (strict) 2-categories.

Question: how are A and the Gray tensor product for
2-categories related?
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Lemma

Let (V ,E ) be a lax monoidal category. Then (E1, u, σ) is a
monad and

1 for any (X1, ...,Xn), E
i

Xi is an E1-algebra.

2 for any E -category X , its homs are E1-algebras.

Question: is there a canonical way to lift E to a multitensor E ′

on V E1 so that E ′-Cat ∼= E -Cat?
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Lifting theorem

Theorem

Let E be an accessible distributive multitensor on a locally
presentable category V . Then there is, to within isomorphism,
a unique multitensor E ′ on V E1 such that

1 the unit for E ′ is the identity.

2 E ′ is distributive.

3 E ′-Cat ∼= E -Cat.
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Lifting theorem

Indication of the proof: One has a commutative triangle of
forgetful functors

G(V E1) E -Cat

GV

oo

���������

��??????

and so an induced monad T on G(V E1).

This monad turns out
to be distributive and path-like and so one can take E ′ = T .

For uniqueness let F be some multitensor with the desired
properties. Then ΓF and T are monads on G(V E1) with the
same algebras, thus they’re isomorphic and so F ∼= T .
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For uniqueness let F be some multitensor with the desired
properties. Then ΓF and T are monads on G(V E1) with the
same algebras, thus they’re isomorphic and so F ∼= T .
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Recall that if you take the Gray tensor product of 2-categories,
and observe what happens in below dimension 2, that one is
observing a canonical tensor product of categories.

Theorem

(Flotz, Kelly and Lair) Up to isomorphism there are exactly two
biclosed monoidal structures on Cat, both symmetric.

The “other one” is often called the “funny” tensor product,
but we call it and its generalisations free products.
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Basics on the free product of categories

there’s an identity on objects comparison A⊗ B → A× B
natural in A and B.

one has the pushout formula:

A0×B0 A0×B

A⊗BA×B0

id×iB //

��
iA×id

��
//

explicitly, morphisms of A⊗ B are generated by

(a, β) : (a, b1)→ (a, b2) (α, b) : (a1, b)→ (a2, b)

subject to relations remembering composition in A and B.

[A,B] consists of functors and “transformations”.
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Basics on the free product of categories

For maps α and β the square

(a1, b1) (a1, b2)

(a2, b2)(a2, b1)

(a1,β) //

(α,b2)
��

(α,b1)
��

(a2,β)
//

commutes in the cartesian product, but not in the free product.

The Gray tensor product proceeds in the same way for objects
and arrows, and in dimension 2 one has a coherent
isomorphism between the two diagonals of this square.
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For any n-operad over Set there is an analogue of the free
product for its algebras.



Lax monoidal
categories and
higher operads

Mark Weber

Introduction

Multitensors
and Monads

Contractibility

Trimble and
Cheng

Gray and
Crans

Free Products

Relevant
Properties

Main ideas for the generalised free products

CAT/Set SMltCAT SMonCAT
F // oo U
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Main ideas for the generalised free products

CAT/Set SMltCAT SMonCAT
F // oo U

(GV ,T )
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Main ideas for the generalised free products

CAT/Set SMltCAT SMonCAT
F // oo U

(GV ,T ) (FGV ,FT )� //

To be described: F is an EM-object-preserving 2-functor over
CAT.
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Main ideas for the generalised free products

CAT/Set SMltCAT SMonCAT
F // oo U

(GV ,T ) (FGV ,FT ) ((GV ,⊗),T )� // oo �

To be described: F is an EM-object-preserving 2-functor over
CAT.

Hermida: U is 2-fully-faithful and its image consists of the
representable multicategories.
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Main ideas for the generalised free products

CAT/Set SMltCAT SMonCAT
F // oo U

(GV ,T ) (FGV ,FT ) ((GV ,⊗),T )� // oo �

To be described: F is an EM-object-preserving 2-functor over
CAT.

Hermida: U is 2-fully-faithful and its image consists of the
representable multicategories. Under mild conditions on V the
multicategory FGV is representable and closed (in the sense of
Manzyuk).
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Main ideas for the generalised free products

CAT/Set SMltCAT SMonCAT
F // oo U

(GV ,T ) (FGV ,FT ) ((GV ,⊗),T )� // oo �

To be described: F is an EM-object-preserving 2-functor over
CAT.

Hermida: U is 2-fully-faithful and its image consists of the
representable multicategories. Under mild conditions on V the
multicategory FGV is representable and closed (in the sense of
Manzyuk). By the 2-fully-faithfulness of U , T is automatically
a symmetric monoidal monad.
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Symmetric monoidal monads

Theorem

(A. Kock) Let T be a symmetric monoidal monad on V a
symmetric monoidal closed category with equalisers. Then the
equaliser

[(X , x), (Y , y)] [X ,Y ] [TX ,Y ]

[TX ,TY ]

// [x ,id] //

��??????

[id,y ]

??������

defines the internal hom and (TI , µI ) the unit of a closed
structure on V T .
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Symmetric monoidal monads

Theorem

(F. Linton, B. Day) If in addition V T has coequalisers then the
coequaliser

T
⊗
i

TXi

T 2
⊗
i

Xi

T
⊗
i

Xi
⊗
i

(Xi , xi )

T
N
i

xi

//

��???
µ

??���

//

defines the associated tensor product on V T making it
symmetric monoidal closed.
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Definition

Let V be locally presentable and the monad T on GV be
accessible. The tensor product on GV T is called the free
product of T -algebras.
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Description of F

Let A be a category over Set and for a ∈ A, denote by a0 the
underlying set of a.

A multimap of FA

f : (a1, ..., an)→ b

consists of a function

f0 : a1,0 × ...× an,0 → b0

together with for each 1 ≤ i∗ ≤ n and z ∈
∏

i 6=i∗
ai ,0, a morphism

fz : ai∗ → b of A such that (fz)0 = (f0)z .

A nullary multimap is just an object of b and a linear map is
just a morphism of A.
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Description of F

Example

FR-Mod is the symmetric multicategory of R-modules and
R-multilinear maps.

Example

Let X be a set and M the monoid of endofunctions of X . The
monoid M acts on X by evaluation giving a functor M→Set.
The symmetric multicategory FM has one object, thus it is
just an operad of sets. In fact FM is the endomorphism
operad of X .
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Canonical map: free product → cartesian product

Bourke: the Gray tensor product for 2-categories can be
obtained by factoring the canonical map from the free to the
cartesian product.

There is no such map for mere graphs. So one can ask: when
is there such a canonical map?
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Canonical map: free product → cartesian product

The unit for the free product on GV is denoted 0: the V -graph
with one object and initial hom. Given a monad T on GV , the
unit for the free product on GV T is (T 0, µ0).

If we had
A⊗ B → A× B

then putting A = 1 and B = (T 0, µ0) would give a map

e : 1→ (T 0, µ0).

It is obviously a split monomorphism. In fact it’s an
isomorphism: to see that the composite

T 0 1 T 0// e //

is the identity it suffices that the composite morphism

0 T 0 1 T 0
η0 // // e //

is η0.
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Canonical map: free product → cartesian product

Proposition

Let V be locally presentable and the monad T on GV be
accessible. There is an identity on objects morphism ⊗ → × of
tensor products iff T 0 = 1.

Such monads T are said to be well-pointed.

When T is coproduct preserving and satisfies the conditions of
the proposition, the free product of T -algebras satisfies the
pushout formula.
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Monads and operads for sesqui-algebras

A sesqui-T -algebra is a category enriched in GV T for the free
product.

Question: if T is an n-operad, then are sesqui-T -algebras
(n+1)-operadic?

Theorem

Let V be locally presentable and the monad T on GV be
accessible and coproduct preserving. Then the monad on G2V
whose algebras are sesqui-T -algebras is given explicitly as
Γ(T

⊗
).
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Monads and operads for sesqui-algebras

Theorem

Let V be locally presentable and extensive, and T be a monad
on GV over Set which is accessible, well-pointed, l.r.a,
distributive and path-like. Suppose that ψ : A→T is a
T -operad. Then

A
⊗
i

Xi T
⊗
i

Xi
∏
i

TXi

ψN
i

Xi

// //

are the components of a T×-multitensor.
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