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When Af has a further right adjoint, denoted [, f is said to
be exponentiable. When £ has finite limits and all its
morphisms are exponentiable, £ is said to be locally cartesian
closed. Toposes are |.c.c but CAT is not.
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is the composite P(p) := X, M,,Ap . A morphism of
polynomials is a diagram of the form

and induces a cartesian transformation P(p) — P(q).
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gives rise to the multiplication for the monoid monad.
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Theorem
(Gambino and Kock 2009) Let € be locally cartesian closed.

Objects of £, polynomials over £ and morphisms of
polynomials form a bicategory Polyg.

Introduction

The construction of polynomial functors from polynomials
gives a homomorphism P¢ : Poly, — CAT.

However the examples of polynomials we are interested in are
in CAT. Also of interest are polynomials in Top — Bisson and
Joyal, The Dyer-Lashof Algebra in Bordism, 1995.
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Let £ be a category with pullbacks.
Objects of £, polynomials over & and morphisms of
polynomials form a bicategory Polyg.

The construction of polynomial functors from polynomials
gives a homomorphism P¢ : Poly, — CAT.
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morphisms («, 3,7) as shown
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making the square with boundary (fo, g2,7, 8) a pullback.
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B (Composition/cancellation) Given

hy

he
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X—FY—

in any category with pullbacks, then the right-most pullback is
a distributivity pullback around (g, hs) iff the composite
diagram is a distributivity pullback around (gf, h).
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where (3) is a pullback. Then (1) and (2) are pullbacks iff (3)
is a distributivity pullback.
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is the category of pullback preserving functors X — Y and
cartesian transformations between them.

A CAT ,,-bicategory is a bicategory B whose homs have
pullbacks and whose compositions

Iterability

compy y 7 - B(Y,Z) x B(X,Y) = B(X, Z)

preserve them. Categories enriched in CAT, are exactly those
CAT ,-bicategories whose underlying bicategory is a
2-category.

A homomorphism F : B — C of CAT yp-bicategories is a
homomorphism of their underlying bicategories whose hom
functors preserve pullbacks.
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Theorem

Let £ be a category with pullbacks. Then Polyg is a
o— CAT ,,-bicategory and

Pg = Polyg — CApr

is a homomorphism of CAT p,-bicategories.

Since the homs of Poly also have pullbacks we can apply the
theorem to any of those homs in place of £.
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A 2-bicategory is a bicategory B whose hom categories are
endowed with 2-cells making them 2-categories and the
composition functors

compy. y 7 : B(Y,Z) x B(X,Y) = B(X, Z)

2-bicategories

are endowed with 2-cell maps making them into 2-functors.
The coherence isomorphisms of B must be natural with respect
to the 3-cells.

3-categories C 2-bicategories C Tricategories
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Theorem

Let IC be a 2-category with pullbacks. Then Poly is a
2-bicategory and

2-bicategories

P : Poly, — 2-CAT

is a homomorphism of 2-bicategories.

A pseudo-monad on an object X of a 2-bicategory B, is a
pseudo-monoid in the monoidal 2-category B(X, X).
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pullback stable and closed under composition. Thus one can
consider the sub-2-bicategory S of Polycat consisting of those
polynomials whose middle map is such.
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Every discrete opfibration with small fibres arises as a pullback
of U : Set, — Set. The 2-dimensional aspect of U's universal
property implies that

Examples

U

1 Set, Set 1

is a biterminal object of S(1,1). Thus it carries a canonical
polynomial pseudo-monad structure. The corresponding
pseudo-monad on CAT is the Fam-construction.

More generally, replace CAT by a finitely complete C whose
discrete opfibrations are exponentiable and U by a classifying
discrete opfibration in /.
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02
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[0]

Cospanc,.

is a lax idempotent pseudo monad (on [1]) in the 2-bicategory
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Let X be an object of a finitely complete 2-category K.

Cotensoring the previous slide with X gives a lax idempotent
pseudo monad (on X) in the 2-bicategory Spanj, which sits
inside Poly.

Examples

The associated pseudo monad on /X is the monad for
fibrations.
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A functor F : A — B is a local right adjoint when for all
X € A the induced functor

Fx : A/X = B/FX

is a right adjoint. When A has 1, it suffices to check this for
X =1

Polynomial functors are l.r.a because for a polynomial p, the
composite [, A, may be identified with Pg(p);. Notice that
the left adjoint to Pg(p)1 is Xp, Ap, which itself preserves
connected limits and thus in particular monos.

More
examples
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examples labelled by 0 are identified, and so L+ does not preserve monos.
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Example

The category monad T on Gph is |.r.a. but not polynomial
over Gph.The left adjoint L7 : Gph/T1 — Gph to T;, applied
to a labelled graph, replaces each edge labelled by n by a path
" of length n. In particular, the source and target of an edge

examples labelled by 0 are identified, and so L+ does not preserve monos.

Given Polynomial functors and opetopes — BJKM 2007, this is
a little sad.
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examples

From which one produces the polynomial p7 : C — D

PT,1 PT,2 PT 3

C~——yw/Er——w/T1 D
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Let T:C — D be l.r.a. Then T can be recovered from its
associated polynomial in the following ways:

g ~Y
Directly as T = lanp,ranp,resp, .

More
examples

By applying P(pT) to discrete fibrations.
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