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Free Monoids

If V is a distributive monoidal category then the formula

X (1) =
∐
n∈N

X⊗n

describing the free monoid on X arises by left extending along
the inclusion of objects i :

N 1

N ∆+

V

i //

X����n 7→X⊗n

lan +3

//

1
��

1N
��

! +3
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This presentation of the free monoid construction depends on

1 The universal property of N: Ps-M-Alg(N,V ) ' V .

2 That of ∆+: Ps-M-Alg(∆+,V ) ' Mon(V ).

3 The distributivity of V .

4 Left kan extending a strong monoidal functor along i
produces a strong monoidal functor.

In this talk we present a setting in which (1)-(3) and the
functor i are definable from a monad theoretic setting, and (4)
is explained via general results.
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The unit η can be thought of as

The 2-cell datum for a lax morphism of 2-monads
(1, η) : (Cat,M)→ (Cat, 1Cat).

The 2-cell datum for an oplax morphism of 2-monads
(1, η) : (Cat, 1Cat)→ (Cat,M).

This situation is summarised in the picture

(Cat,M) (Cat, 1)
(1,η)

//

(1,η)oo
⊥
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General setting

The general setting involves three 2-monads and monad
morphisms

(K,T ) (L, S) (M,R)
(F ,φ)

//
(G ,γ)

//

(G̃ ,γ̃)oo(F̃ ,φ̃)oo
⊥ ⊥

which play the following roles.

T : the structure of the environment (monoidal category).

S : the richer structure considered within T -algebras
(monoids in monoidal categories).

R: the simpler structure considered within T -algebras
(objects in monoidal categories).

(F , φ) and (H, ψ) = (G , γ)(F , φ) is data necessary to
define what S and R-algebras within T -algebras are.
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Recovering the ingredients of the free monoid
construction

Monoids in V can be thought of as

Lax M-morphisms 1→ V , by definition.

When V is strict, as strict M-algebra morphisms ∆+ → V .

For general V , as strong M-algebra morphisms ∆+ → V .

Objects of V can be thought of as

Lax 1Cat-morphisms 1→ V , by definition.

When V is strict, as strict M-algebra morphisms N→ V .

For general V , as strong M-algebra morphisms N→ V .
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Obtaining N, ∆+ and i from the general setting

Given

(K,T ) (L,S)
(F ,φ)

//

(F̃ ,φ̃)oo
⊥

the 2-functor

T -Algs → S-Algl TA
a−→ A 7→ SFA

φA−→ FTA
Fa−→ FA

has a left adjoint when T -Algs admits codescent objects. The
effect on 1 of this left adjoint is denoted T S .
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Thus by definition T S is universal among strict T -algebras

T -Algs(T S ,V ) ∼= S-Algl(1,FV )

and when K = Cat(E) for E complete and cocomplete, and T
preserves bijections on objects, T S is also universal among
pseudo-T -algebras

Ps-T -Alg(T S ,V ) ' Ps-S-Algl(1,FV )

since it’s flexible and using Power’s coherence theorem for
T -algebras.
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Reformulating i : N→ ∆+

Applying F to the universal map 1→ TT and applying T S ’s
universal property gives

Tφ : T S → TT

which is i : N→ ∆+ when

(F , φ) = (1, η) : (Cat,M)→ (Cat, 1).
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Reminder of codescent objects

The colimit of X : ∆op → K weighted by ∆ ↪→ Cat is called
the codescent object of X . The universal cocone of this
colimit consists of (q, q)

X2 X1 X0 CD(X )
//
////

d1 //oo
d0

//
q //

where q : qd1 → qd0 such that

qs0 = id (qd0)(qd2) = qd1.
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T φ in terms of codescent objects

T F̃ S21 T F̃ S1 T F̃ 1 T S
//
////

µF̃1T (φ̃1)
//oo

TF̃ !

// //

T 31 T 21 T 1 TT
//
////

µ1 //oo
T !

// //
�� �� ��

Tφ

��

When T preserves codescent objects, these codescent objects
may be computed in K. This enables one to unpack the square
witnessing Tφ is a strict T -algebra map.
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i : N→ ∆+ in terms of codescent objects

N N N N
//
////

//oo // //

M2N MN N ∆+
//
////

//oo // //
�� �� ��

i

��
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The assignation

(K,T )
(F ,φ)−−−→ (L,S) 7→ T S Tφ

−−→ TT

is object map of a functor, the arrow map of which produces

TR T S

TT

Tγ
//

����
=

from the general setting.
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Distributivity of V . One can say that V has coproducts by
saying it admits pointwise left kan extensions along the
following classes C of functors

f : A→ B where A and B are small discrete.

f : A→ B where A is small discrete and B’s
endomorphisms are all identities.

In general we say that the object V of Cat is cocomplete
relative to all f ∈ C.
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The preservation in each variable of
∐

’s by V ’s ⊗ can be
formalised by saying that if φ is a pointwise left extension

A B

V

f //

h����g

φ +3

MA MB

MV

V

Mf //

Mh����Mg

⊗
��

Mφ+3

where f ∈ C, then so is the diagram on the right.

In general we say that the pseudo M-algebra V is algebraically
cocomplete relative to all f ∈ C.
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General idea: left kan extension along T γ : TR → T S is some
kind of meaningful construction, the combinatorics of which is
encapsulated by the monads and monad morphisms from which
it arose.

Questions:

1 Find general conditions on strict T -morphisms so that left
extending a strong T -morphism along it is a strong
T -morphism.

2 Sufficient conditions on the monad morphisms so that T γ

satisfies (1).
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Exactness of a square

D C

BA

q //

x
��
//

f

��
p

ψ +3

in a 2-category K with comma objects: if φ is p.l.e then so is
its composite with ψ.

A B

X

f //

h
����

g

φ +3

D C

BA

X

q //

x
��
//f��

p
ψ +3

h
����

g

φ +3
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Proposition

In any 2-category with comma objects the following squares are
exact:

Comma squares.

Pullback squares in which f is an opfibration.

Pullback squares in which x is a fibration.

Bipullback squares in which f is a bi-opfibration.

Bipullback squares in which x is a bi-fibration.
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A 2-functor T : A → B between 2-categories with finite limits
is opfamilial when

T1 : A → B/T 1 has a left adjoint.

T1 factors through the forgetful functor
SOpFib(T 1)→ B/T 1.

Given a 2-monad (K,T ) where K has comma objects, a strong
T -morphism f : A→ B is exact when

TA TB

BA

Tf //

b
��
//

f

��
a ∼=

is an exact square.
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Answer to Question 1

Theorem

Let (T , η, µ) be a 2-monad on a finitely complete 2-category
K, f : A→ B be a strong T -morphism between pseudo
T -algebras, and V be a pseudo T -algebra. If

1 T is opfamilial and µ’s naturality squares are pullbacks,

2 f is exact, and

3 V is algebraically cocomplete relative to f in K,

then left extensions along f into V in Ps-T -Alg are computed
as in K.
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The polynomial functor Cat/X → Cat/Y associated to a
polynomial

p : X A B Yoo p1 p2 // p3 //

in Cat, is the composite P(p) := Σp3Πp2∆p1 . A morphism of
polynomials is a diagram of the form

X

A B

Y

B ′A′

uu

p1

p2 //
p3

))
ii

q1

q2

//
q3

55f0

��

f1

��

pb

and induces a cartesian transformation P(p)→ P(q).
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Examples of polynomial monads. For monoids and
symmetric monoidal categories:

1← N∗ → N→ 1 1← P∗ → P→ 1

For operads:

N← RTrees∗ → RTrees→ N

For cyclic and modular operads

N← Trees∗ → Trees→ N N← Graphs∗ → Graphs→ N
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A relative polynomial context

K A1 B1 K

J A2 B2 J

I A3 B3 I

oo r1 r2 // r3 //

oo q1 q2 // q3 //

oo
p1 p2

//
p3

//

g

��

f
��

γ0

��

φ0
��

γ1

��

φ1
��

g

��

f
��

pb

pb

gives rise to the following monads and monad morphisms

(Cat/I ,P(p)) (Cat/J,P(q)) (Cat/K ,P(r))
(∆f ,φ)

//
(∆g ,γ)

//

(Σg ,γ̃)oo(Σf ,φ̃)oo
⊥ ⊥
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Answer to Question 2

Theorem

In a relative polynomial context, in which

I , J and K are discrete.

B1, B2 and B3 are groupoids.

p2, q2 and r2 are discrete fibrations with finite fibres

the strict P(p)-algebra morphism

P(p)γ : P(p)P(r) → P(p)P(q)

is exact.

In fact the algebra square is a bipullback in which the vertical
arrow in the generating cospan is a bi-fibration.
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To prove the theorem we need a good understanding of the
codescent objects involved.

T F̃ S21 T F̃ S1 T F̃ 1 T S
//
////

µF̃1T (φ̃1)
//oo

TF̃ !

// //

Key features:

The simplicial object is a category object in K.

T F̃ ! is a split opfibration.

The unit and composition maps for the category object are
morphisms of split opfibrations.

enable us to compute the codescent objects more easily, and
generalise the notion of crossed simplicial group.
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Free operads

From
N N N N

N RTrees∗ RTrees N

1 P∗ P 1

oo // //

oo // //

oo // //

1
��

��

��

��

��

��

1
��

��

pb

pb

we express the construction of the free operad on a collection
in a nice enough symmetric monoidal category V as left kan
extension along Sym(N)→ R, where R is a symmetric strict
monoidal category whose objects are sequences of natural
numbers, and arrows are sequences of rooted trees.
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Modular envelope of a cyclic operad

From
N Tree∗ Tree N

N Graph∗ Graph N

1 P∗ P 1

oo // //

oo // //

oo // //

1
��

��

��

��

��

��

1
��

��

pb

pb

we express the construction of the modular envelope of a cyclic
operad in a nice enough symmetric monoidal category V as left
kan extension along T → G, where T and G are symmetric
strict monoidal categories whose arrows sequences of trees and
graphs respectively.
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Modular envelope of a cyclic operad

Important for Kevin Costello’s classification of open TCFT’s as
A∞-Frobenius algebras, which comes from a homotopy
equivalence between the modular envelope of a topological
operad of associahedra, and an operad of moduli spaces of
Riemann surfaces with boundary and marked points on the
boundary.
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Colimits in categories of algebras

Let C be a category. The functor

lanTγ : Ps-T -Alg(TR ,V )→ Ps-T -Alg(T S ,V )

coming from

J × C0 A2 × C1 B2 × C1 J × C0

J A2 B2 J

I A3 B3 I

oo q1×s q2×1 // q3×t //

oo q1 q2 // q3 //

oo
p1 p2

//
p3

//

g

��

f

��

γ0

��

φ0

��

γ1

��

φ1

��

g

��

f

��

pb

pb

is
colim : [C ,Ps-T -Alg(T S ,V )]→ Ps-T -Alg(T S ,V ).
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