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Faà di Bruno for operads and internal algebras

Joachim Kock and Mark Weber

Abstract. For any coloured operad R, we prove a Faà di Bruno formula for the ‘connected Green
function’ in the incidence bialgebra of R. This generalises on one hand the classical Faà di Bruno
formula (dual to composition of power series), corresponding to the case where R is the terminal
reduced operad, and on the other hand the Faà di Bruno formula for P -trees of Gálvez–Kock–Tonks
(P a finitary polynomial endofunctor), which corresponds to the case where R is the free operad on
P . Following Gálvez–Kock–Tonks, we work at the objective level of groupoid slices, hence all proofs
are ‘bijective’: the formula is established as the homotopy cardinality of an explicit equivalence of
groupoids. In fact we establish the formula more generally in a relative situation, for algebras for one
polynomial monad internal to another. This covers in particular nonsymmetric operads (for which
the terminal reduced case yields the noncommutative Faà di Bruno formula of Brouder–Frabetti–
Krattenthaler).
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0. Background

The Faà di Bruno formula computes the coefficients of the composite of two formal power series
without constant terms. For

fpzq “
8
ÿ

n“1

fn
zn

n!
and gpzq “

8
ÿ

n“1

gn
zn

n!

the composite series

pg ˝ fqpzq “:
8
ÿ

n“1

hn
zn

n!
has hn “

n
ÿ

k“1

Bn,kpf1, f2, . . .q ¨ gk
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2 JOACHIM KOCK AND MARK WEBER

where Bn,kpx1, x2, x3, . . .q are the partial Bell polynomials, whose coefficient of a monomial xλ11 x
λ2
2 ¨ ¨ ¨xλnn

counts the number of partitions of an n-element set into k blocks: λ1 blocks of size 1, λ2 blocks of
size 2, etc. (

ř

i λi “ k and
ř

i iλi “ n).
We shall not actually need this classical formulation, for which we refer to the survey of Figueroa

and Gracia-Bond́ıa [18]. An excellent historical account of the formula is due to Johnson [29].
Our starting point is instead an elegant coalgebraic rendition of the formula, which, as far as

we know, was first noticed by Brouder, Frabetti and Krattenthaler [6], inspired by constructions in
perturbative quantum field theory. Let Ak denote the linear functional on the vector space of power
series that takes f to f pkqp0q, i.e. returns the coefficient of zk{k!. The Faà di Bruno bialgebra is the
polynomial ring CrA1, A2, A3, . . .s with comultiplication dual to the monoid structure of composition
of power series. Doubilet [14] proved that the Faà di Bruno bialgebra is the reduced incidence
bialgebra of the lattice of set partitions, and Joyal [31] observed that it can also be obtained directly
(without a reduction step) from the category of surjections.

Brouder, Frabetti and Krattenthaler introduce the infinite series

A “
8
ÿ

k“1

Ak{k! P CrrA1, A2, A3, . . .ss,

check that the comultiplication extends to the power-series ring, and show that the Faà di Bruno
formula can be formulated succinctly as

(1) ∆pAq “
8

ÿ

k“1

Ak b Ak{k!

(The exponent k is kth power in the ring.) The individual coefficients can be extracted from this
formula.

This form of the Faà di Bruno formula is of importance in quantum field theory, where the role
of the series A is played by the connected Green function [5], defined in the Connes–Kreimer Hopf
algebra of Feynman graphs [13] as the sum of all connected graphs divided by their symmetry fac-
tors. Van Suijlekom [47] established a (multivariate) Faà di Bruno formula for the connected Green
function, thereby vindicating the relevance of the Hopf algebra of graphs also in non-perturbative
QFT. The coalgebraic Faà di Bruno formula (1) has also been exploited in the so-called exponential
renormalisation [17]. Inspired by van Suijlekom’s result, Gálvez, Kock and Tonks [21] proved a gen-
eral Faà di Bruno formula in bialgebras of P -trees (P a finitary polynomial endofunctor), introducing
categorical and homotopical methods which we further exploit in the present contribution to prove
a Faà di Bruno formula in a much more general setting.

Beyond calculus, combinatorics, and classical applications to probability theory (for the latter,
see for example [32]), Faà di Bruno-type formulae pop up in various contexts in the mathematical
sciences. Most prominently perhaps in algebraic topology, in connection with complex cobordism [41]
and vertex operator algebras [43], but also in areas such as control theory [15, 27], population
genetics [28], and differential linear logic [11], to mention a few that have come to our attention. We
do not know whether our contribution can be of any relevance in these contexts.

1. Outline of results and proof ingredients

1.1. Heuristic outline. Given an operad R (satisfying finiteness conditions, cf. 1.5 below), one
can form its incidence bialgebra: as an algebra it is the polynomial ring in the set of iso-classes
of operations of R. The monomials are interpreted as formal disjoint unions of operations. The
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comultiplication is the crucial structure: an operation is comultiplied by summing over all ways the
operation can arise by operad substitution from a collection of operations fed into a single operation:

∆prq “
ÿ

r“b˝pa1,...,anq

a1 ¨ ¨ ¨ an b b.

(The sum is over iso-classes of factorisations—to be technically correct it should rather be a homotopy
sum, as will be detailed.) The comultiplication is extended multiplicatively to the whole polynomial
ring, which therefore becomes a bialgebra, the incidence bialgebra of the operad [25].

Inside the completion of this bialgebra (the power series ring), we now define the connected Green
function (by analogy with quantum field theory) to be the series consisting of all the operations
themselves (but not their disjoint unions—this is the meaning of the word ‘connected’), divided by
their symmetry factors. This series G can be written as an infinite sum

G “
ÿ

n

gn

where gn consists of all the operations of arity n (n a sequence of colours), divided by their symmetry
factors. The comultiplication is shown to extend to the power series ring, and we can now state our
general Faà di Bruno formula:

Main Theorem. (Cf. 5.6.)

∆pGq “
ÿ

k

Gk b gk.

The two extreme examples of this construction are the following. When R is the terminal reduced
operad Comm` (i.e. no nullary operations, and a single n-ary operation for each n ą 0), then the
formula is the classical (1) (cf. Example 7.1), with gk denoting the unique operation in arity k (divided
by k!), corresponding to Ak{k!. When R is the free operad on a finitary polynomial endofunctor P ,
then the operations are the P -trees, and gn is given by iso-classes of P -trees with n leaves. The
resulting Faà di Bruno formula in this case is that of Gálvez–Kock–Tonks [21] (cf. Example 7.4).
More examples are given in Section 7.

1.2. Formalisation. It is likely that the formula could be proved by hand, just by expansion of
series and brute computation. The difficulty in that approach is to handle correctly the symmetry
factors that appear, as well illustrated by the computations of van Suijlekom [46, 47]. The insight
of [21] in the case of trees was that the formula can be realised as the homotopy cardinality of an
equivalence of groupoids (hence constituting a bijective proof), and that at the groupoid level all
the symmetry factors take care of themselves automatically. The actual equivalence established in
[21] involves groupoids of trees and trees with a cut, relying on specifics of the combinatorics of the
Butcher–Connes–Kreimer bialgebra of trees.

The present contribution exploits the objective method initiated in [21], establishing the Faà
di Bruno formula as the homotopy cardinality of an equivalence of groupoids, but takes a further
abstraction step, which leads to a more general formula and a much simpler proof. We achieve
this by leveraging some recent advances in category theory: on one hand, 2-categorical perspectives
on operads and related structures discussed in [51, 52, 53], and on the other hand, the theory of
decomposition spaces [23, 24]. With these tools, the proof of the equivalence of groupoids ends up
being rather neat, emerging naturally from general principles.
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1.3. The objective method in a nutshell: groupoid slices instead of vector spaces. It is
well appreciated in combinatorics that bijective proofs represent deeper insight than formal algebraic
ones. From the viewpoint of category theory, this deeper insight typically involves universal prop-
erties. Algebraic objects associated to combinatorial structures often have underlying vector spaces,
generated freely by isomorphism classes of the combinatorial objects. It is a general hypothesis that
whenever linear combinations involve symmetries—as exemplified in quantum field theory where for-
mal sums of Feynman graphs are weighted by inverses of symmetry factors—they arise as homotopy
cardinalities of groupoids rather than just cardinalities of sets; more precisely, as homotopy cardi-
nalities of homotopy sums, as we recall below. Accordingly, algebraic identities in such situations
should reflect equivalences of groupoids rather than bijections of sets.

A systematic way of expressing algebraic identities objectively is to replace vector spaces by slice
categories. If B is a groupoid of combinatorial objects, then the basic vector space of interest is the
free vector space on π0B, the set of iso-classes of objects in B. Just as a vector is a formal linear
combination of elements in π0B (i.e. a family of scalars indexed by π0B), an element p : X Ñ B in
the slice category Grpd{B is a collection of groupoids indexed by B, the members of the family being
the (homotopy) fibres Xb. Similarly, linear maps are represented by ‘linear functors’, in turn given
by spans of groupoids. The ordinary linear algebra is obtained by taking the homotopy cardinality of
the groupoid-level ‘linear algebra’ [22]. The homotopy cardinality of a family p : X Ñ B in Grpd{B

is defined as

|p| “
ÿ

bPπ0B

|Xb|

|Aut b|
δb

which is an element in the vector space Qπ0B spanned by the symbols δb, one for each iso-class of
objects in B.

1.4. Brief explanation of the groupoid equivalence. To explain the equivalence briefly, for
simplicity we take the case where R is single-coloured, and gloss over a few technical details. The
basic vector space is that spanned by the monomials in the (iso-classes of) operations of the operad
R. Accordingly, we shall work with the groupoid D1 “ SC1, the free symmetric monoidal category on
the groupoid C1 of operations of R; more precisely, C1 is the action groupoid (i.e. homotopy quotient)
for the action of the symmetric groups on the sets of operations. So the basic slice is Grpd{D1

whose
cardinality is the vector space Qπ0D1

spanned by π0D1. The connected Green function G is the formal
series defined as the homotopy cardinality of the object C1 Ñ D1 in Grpd{D1

. The comultiplication
map ∆ is the cardinality of a certain span [23],

D1
d1ÐÝ D2

pd2,d0q
ÝÑ D1 ˆ D1

whose maps refer to a simplicial groupoid D‚ : △op Ñ Grpd canonically constructed from the operad
as a certain relative (two-sided) bar construction (cf. Section 3). The Faà di Bruno formula, which
at the algebraic level is an equation in the vector space Qπ0D1

b Qπ0D1
, is therefore supposed to be

the cardinality of an equivalence of groupoids over D1 ˆ D1. Here is the equivalence (established in
Proposition 3.11):

C1 ˆD1
D2

  ❇
❇❇

❇❇
❇❇

❇
»

şk
pD1qk ˆ kpC1q

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

D1 ˆ D1.

The left-hand side is precisely the definition of the comultiplication of the connected Green function
C1 Ñ D1, so its homotopy cardinality is ∆pGq. The right-hand side is a groupoid D1 ˆD0

C1, written
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as the homotopy sum of its homotopy fibres over D0, the groupoid of finite sets and bijections, and it
has to be unravelled a bit: pD1qk denotes the k-component of the groupoid of families of operations,
meaning those families that have k members. This is the same thing as k-tuples of operations,
pD1qk » pC1q

k, whose homotopy cardinality is precisely Gk. The symbol kpC1q denotes the homotopy
fibre of C1 over k under the arity map, so it is the groupoid of k-ary operations, and maps fixing the
input slots. The integral sign designates a homotopy sum [8, 22],

ż k

p q “
ÿ

k

p q

Aut k

where the division bar denotes homotopy quotient under the action of Autpkq, acting diagonally on
pD1qk ˆ kpC1q. Since the action on the first factor is free, the action can be passed to the second
factor, and the effect of it is to add morphisms to the groupoid kpC1q to allow permutation of the

inputs. Altogether, kpC1q
Autpkq

is the full groupoid of k-ary operations, and its homotopy cardinality is

precisely gk, showing that altogether the right-hand side of the equivalence has homotopy cardinality
ÿ

k

Gk b gk

as claimed.
The task is now to define the involved groupoids Di and Ci correctly. It is a pleasing aspect

of our approach that these groupoids come about by the standard general construction in algebraic
topology known as the relative (two-sided) bar construction.

1.5. Finiteness conditions. At the groupoid level, in the ‘objective’ bialgebra Grpd{D1
, the

Faà di Bruno formula holds for any operad. However, in order to be able to take cardinality, a
certain finiteness condition must be imposed [24] (which is automatic in the two previously known
cases, when either R is Comm` or free on a polynomial endofunctor). Namely, an operad R is called
locally finite when for each operation r, the groupoid of possible decompositions r “ b ˝ pa1, . . . , anq
is homotopy finite. Equivalently, the map d1 : D2 Ñ D1 is homotopy finite.

1.6. Remark on grading and Hopf versus bialgebras. The classical Faà di Bruno bialgebra
is naturally graded, with degAk “ k´ 1. Because of this minus-one, a shifted indexing convention is
often used in the literature [6, 16, 46, 47], writing Ak´1 instead of Ak. The present convention (also
that of [21] and [37]) is dictated by the operadic approach, where it is essential that the superscript
on Gk (counting k outputs) matches the subscript on gk (counting k inputs).

It is also worth noting that it is essential to work with bialgebras rather than Hopf algebras. Our
bialgebras are not connected, as in degree zero they are certain free symmetric monoidal categories,
such as in the classical case the groupoid of finite sets and bijections (to which k belongs). Hopf
algebras can be obtained by collapsing degree zero, but this amounts to throwing away the data
controlling the match, as just described.

1.7. Generalisations. The arguments actually work the same for any situation R ñ S, of two
polynomial monads, one cartesian over the other, but possibly over different slices. The construction
also works for R-algebras rather than for R itself (which is actually the case of the terminal R-algebra).
We describe these generalisations in Section 6.

In the operad case, S is the symmetric monoidal category monad. The comonoid structure comes
from the combinatorics of R, and it will (almost) always be noncocommutative, as a consequence of
the fact that operads have many inputs but only one output. The algebra structure, which is always
free, is of a different nature, deriving from the fact that operads are considered internal to symmetric
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monoidal categories, by the choice of S. For general S, the outcome will not exactly be a bialgebra,
but rather a free S-algebra in the category of coalgebras. Some care is needed to interpret the Faà
di Bruno formula correctly in this more general setting, described in Section 6.

2. Operads and polynomial monads

Our main interest is in operads, but it is technically convenient to deal with them in the setting
of polynomial monads, which also leads to a natural generalisation. The natural level of generality
for our Faà di Bruno formula is that of one polynomial monad cartesian over another

R ñ S

in a double-category sense [19]. However, for expository reasons, and since it is the main case, we
concentrate on the case of operads, namely when S is the symmetric monoidal category monad (2.5),
which we assume in Sections 2–5. Then in Section 6 we explain how everything carries over readily
to the general case.

2.1. Groupoids and homotopy sums. We freely use basic homotopy theory of groupoids, such
as homotopy pullbacks and homotopy fibres, referring to [8] for all details. Here we content ourselves
to briefly review the notion of homotopy sum, since it is a key point, accounting for the origin of the
symmetry factors, as first exploited in [21].

It is plain that for a map of sets E Ñ B, the set E can be regarded as the sum of its fibres,
E »

ř

bPB Eb. The same is true for groupoids, provided we use homotopy fibres and homotopy sums,
as we now recall. Each homotopy fibre Eb comes with a canonical map to E, but it is not fully
faithful. But the automorphism group Autpbq acts on Eb canonically, and the action groupoid (also
called homotopy quotient) Eb{Autpbq does map to E fully faithfully; summing over one element b
for each connected component in B then yields an equivalence of groupoids

ÿ

bPπ0B

Eb

Autpbq
» E.

The left-hand side is an example of a homotopy sum, and is denoted
şbPB

Eb. It is an instance of
a homotopy colimit, indexed by the groupoid B, just as an ordinary sum is a colimit indexed by a
set. (The integral notation is standard, and is also compatible with general usage in category theory,
since it is also an instance of a coend.) The great benefit of working with homotopy sums, is that
they interact with homotopy pullbacks in the nicest way, precisely as ordinary sums interact with
pullbacks in the category of sets.

The following lemma, which is a straightforward variation of this splitting into fibres, will be
crucial for the Faà di Bruno formula.

Lemma 2.2. Given a (homotopy) pullback square

P
❴
✤

//

��

Y

��
X // S

there is a natural equivalence of groupoids

P »

ż sPS

Xs ˆ Ys.
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It is also an equivalence over X ˆ Y , meaning more precisely an equivalence in the weak slice
Grpd{XˆY .

2.3. Polynomial monads, classically. The theory of polynomial functors has roots in topology,
representation theory, combinatorics, logic, and computer science. A standard reference is [26], which
also contains pointers to those original developments.

A polynomial is a diagram of sets

I
s

Ð E
p

Ñ B
t

Ñ I 1.

It defines a polynomial functor Set{I Ñ Set{I 1 by the formula

t! ˝ p˚ ˝ s˚.

Polynomial functors form a double category in which the 2-cells are diagrams of the form

¨

��

¨oo

❴
✤

//

��

¨

��

// ¨

��
¨ ¨oo // ¨ // ¨

Polynomial monads are horizontal monads in this double category, and the relevant monad maps are
the vertical monad maps [19]. At the level of functors, this situation amounts to having one monad
R on the slice category Set{I, another monad S on the slice category Set{J , and a map F : I Ñ J

for which F! : Set{I Ñ Set{J and its right adjoint F ˚ form a monad adjunction in the sense of [52].
This is turn amounts to having a natural transformation φ : F!R Ñ SF! making pF!, φq into a monad
opfunctor in the sense of Street [45].

Polynomial monads over Set can account for nonsymmetric operads [26] and more generally
sigma-free operads [33], but to account for general (symmetric) operads, at least groupoids are
needed instead of sets.

2.4. Polynomial functors over groupoids. Polynomial functors over groupoids can be dealt
with either in a homotopical setting as outlined in [34] or in a 2-categorical setting [50].

In the homotopical setting, the involved groupoids are only ever defined up to homotopy equiva-
lence; one works with weak slices, and all notions are homotopy, e.g. homotopy pullbacks, homotopy
fibres, etc., exploiting that in the homotopy sense groupoids form a locally cartesian closed category.
Ultimately, the natural setting for this approach is that of 8-groupoids, as adopted in [23, 24]. We
follow ‘tradition’ in homotopy theory of denoting the weak slices Grpd{I , with a subscripted slash.

On the other hand, in the 2-categorical approach one works mostly with strict slices Grpd{I
(for which we use non-subscripted slashes), strict pullbacks, and so on. (Actually the 2-categorical
approach deals naturally with categories instead of groupoids, as exploited to good effect in [50,
51, 52], but for the present purposes we stick with groupoids.) The 2-category Grpd is not locally
cartesian closed, so one has to assume the middle maps in the polynomial diagrams to be fibrations,
in order for pullbacks to have right adjoints (‘lowerstars’). Fibrations also play an important role
to ensure that various ‘strict’ constructions involving pullbacks are homotopically meaningful. Such
issues are handled efficiently in terms of the fibration monads [44], which turns general functors into
fibrations. The weak slice Grpd{I appears as the Kleisli category for the fibrations monad on the
strict slice Grpd{I, and the homotopy content is essentially controlled in terms of compatibilty with
the fibration monads [49, 51, 52].

Both approaches will be exploited here: for the purpose of setting up the simplicial groupoid D‚,
we shall work 2-categorically, since it gives more precise results, and since a well-developed theory
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is already in place. But once that simplicial groupoid is in place, we shall pass to the homotopical
setting, since the main object of interest is the weak slice Grpd{D1

.

2.5. Key example: the symmetric monoidal category monad. From now on, and until
Section 6, S : Grpd Ñ Grpd denotes the symmetric monoidal category monad. It is polynomial,
represented by the polynomial

1 Ð B1 Ñ B Ñ 1

where B is the groupoid of finite sets and bijections, and B1 is the groupoid of finite pointed sets and
basepoint-preserving bijections. The formula for evaluation is

X ÞÑ

ż nPB

MappB1
n, Xq »

ż nPB

Xn,

where n denotes the fibre over n. Note that B1 Ñ B is a discrete fibration (in fact the classifier for
finite discrete maps of groupoids). Hence any monad cartesian over S will automatically be finitary
again, meaning that all operations have finite discrete arity.

2.6. Operads as polynomial monads. By operad we mean coloured symmetric operad in the
category of sets. It was shown in [51] (Theorem 3.3) that operads are the same thing as polynomial
monads cartesian over the symmetric monoidal category monad

I

��

Eoo

❴
✤

//

��

B

��

// I

��
1 B1oo // B // 1

for which I is a set, and B Ñ B is a discrete fibration. The polynomial viewpoint on operads has
proven very useful in homotopy theory [4].

The equivalence goes as follows. Given an operad R, let I be its set of colours. Let B be the action
groupoid (i.e. homotopy quotient) of the action of the symmetric groups on the sets of operations of
each arity. More precisely, for the symmetric-group action Rn ˆ Sn Ñ Rn, the action groupoid has
as objects the elements in Rn, and an arrow from r to r1 for each g P Sn such that r.g “ r1. Finally,
B is the disjoint union of these action groupoids, with its canonical map to B, itself the disjoint
union of the classifying spaces of the Sn. This is a discrete fibration, whose fibre over n is the set
Rn, by the standard fibre sequence for action groupoids [8]. Note that the action respects colours;
for this reason it is meaningful to define the map B Ñ I by assigning to an operation its output
colour. The groupoid E consists of operations with a marked input slot. The map E Ñ I assigns to
a marked operation the colour of its marked input. The fibre of E Ñ B over an operation r is the
set of its input slots. The monad structure on the polynomial endofunctor comes precisely from the
substitution operation of the operad R. The fact that this monad on Grpd{I is itself polynomial,
implies that it is cartesian.

Conversely, given a polynomial monad cartesian over S as above, the discrete fibration B Ñ B

induces a S-set which is the set of operations. The set of n-ary operations is the (homotopy) fibre
of B Ñ B over n. The fact that there is a pullback square gives the set of input slots a linear
order (interpreting B as the groupoid of linear orders n “ t1, 2, . . . , nu and not-necessarily-monotone
maps), as befits an operad in the classical sense. The operad substitution comes from the monad
multiplication.

Although not central to this article, the monads R, S and the fibrations monads described above,
are all 2-monads. In particular since R is a 2-monad, one may consider its strict algebras, and from
[51] these were understood to be ‘weakly-equivariant’ Cat-valued algebras of the operad R. The
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2-dimensionality of R and S enables the definition of an ‘algebra of R internal to an algebra of S’ to
be made, as in [3, 4, 52], and it is these that correspond to the algebras of the operad R in the usual
sense. From now on, the symbol R refers rather to the polynomial monad, which is what we actually
work with.

3. Monad adjunctions and the relative (2-sided) bar construction

3.1. Set-up. We consider the situation as in 2.6, where we have a polynomial monad R on
Grpd{I, cartesian over the symmetric monoidal category monad S on Grpd, represented altogether
by the polynomial diagram

I

F
��

Eoo

❴
✤

//

��

B

��

// I

F
��

1 B1oo // B // 1

The two monads R and S are intertwined by means of the functor F! and the natural transformation

φ : F!R ñ SF!

forming together a monad opfunctor in the sense of Street [45], a monad adjunction in the sense of
[52], or a vertical morphism of horizontal monads in the double-category setting [19].

It is a general fact that the natural transformation φ is cartesian. This follows because its
ingredients are the unit and counit of lowershriek-upperstar adjunctions and an instance of the
Beck–Chevalley isomorphism. See [52, § 3.3] for details.

3.2. A simplicial-object-with-missing-top-face-maps. Let A denote the terminal object in
Grpd{I, and let α : RA Ñ A denote the unique map from RA in Grpd{I. (Note that α has
underlying map of groupoids B Ñ I.) The pair pA, αq is the terminal R-algebra.

In Grpd{I there is induced a natural simplicial-object-with-missing-top-face-maps

(2) A s0 // RA
d0oo

¨ ¨ ¨ ¨ ¨ ¨ ¨

s0 //
s1 //

RRA
d0oo
d1oo

¨ ¨ ¨ ¨ ¨ ¨ ¨

s0 //
s1 //
s2 //

RRRA

d0oo
d1oo
d2oo

¨ ¨ ¨ ¨ ¨ ¨ ¨

¨¨¨

The bottom face maps come from the action α : RA Ñ A, and the remaining face and degeneracy
maps come from the monad structure. Hence the basic maps are

A ηA // RA
αoo

¨ ¨ ¨ ¨ ¨ ¨ ¨

RηA //
ηRA //

RRA
Rαoo
µAoo

¨ ¨ ¨ ¨ ¨ ¨ ¨

and in general, sk : R
nA Ñ Rn`1A is given by Rn´kηRkA and dk : R

n`1A Ñ RnA is given by Rn´kµRk´1A,
with the convention that µR´1A “ α.

We now apply F! to the diagram (2) above, to obtain inside Grpd a simplicial-object-with-
missing-top-face-maps which we denote C‚:

C‚ : F!A s0 // F!RAd0oo
¨ ¨ ¨ ¨ ¨ ¨ ¨

s0 //
s1 //

F!RRA
d0oo
d1oo

¨ ¨ ¨ ¨ ¨ ¨ ¨

s0 //
s1 //
s2 //

F!RRRA

d0oo
d1oo
d2oo

¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨

Finally we apply S: the diagram now acquires the missing top face maps, and constitutes altogether
a simplicial object in Grpd ([52], Lemma 4.3.2) which we denote D‚:

D‚ : SF!A s0 // SF!RAd0oo
d1oo

s0 //
s1 //

SF!RRA
d0oo
d1oo
d2oo

s0 //
s1 //
s2 //

SF!RRRA

d0oo
d1oo
d2oo
d3oo

¨ ¨ ¨
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The new top face maps are given by

dJ :“ µS ˝ Spφq.

For example, the first of the top face maps is given as

SSF!A
µS

zz✉✉
✉✉
✉✉
✉✉
✉

SF!A SF!RA.
d1

oo

Sφ
ee❑❑❑❑❑❑❑❑❑❑

Proposition 3.3 ([52], Proposition 4.4.1). The simplicial object D‚ is a strict category object.

The statement is that all the squares

Dn`2

d0 //

dn`2

��

Dn`1

dn`1

��
Dn`1

d0

// Dn

are strict pullbacks. As an illustration, the first of these squares (n “ 0) is the following, by unravelling
the definition of the top face maps:

(3)

SF!RRA
SF!Rα //

SpφRAq
��

SF!RA

SpφAq
��

SSF!RA
SSF!α //

µS
F!RA

��

SSF!A

µS
F!A

��

SF!RA
SF!α

// SF!A.

The bottom square is a naturality square for the monad multiplication, and is therefore a strict
pullback. The top square is S applied to a naturality square for φ. Since φ is cartesian and S

preserves pullbacks, this is again cartesian.

3.4. Remark. This simplicial object is a variation of the 2-sided bar construction, which has
a long history in algebraic topology [40]. The construction here from an operad is important in
category theory since its codescent object (its lax colimit) is the classifier for R-algebras (at the
present level of generality in symmetric monoidal categories), i.e. the universal symmetric monoidal
category containing an internal R-algebra, cf. [4], [52]. In the present work, we do not take the
codescent object, but work directly with the simplicial groupoid.

Proposition 3.5. The simplicial groupoid D‚ is a Segal groupoid.

Proof. Since we already know that it is a category object, the statement is that the strict pull-
back squares in question are also homotopy pullbacks, a typical result for the 2-categorical approach
to polynomial functors. Since the Segal squares are composed of components of φ and components of
µS (as in diagram (3)), it is enough to show that S˝F! (the codomain of φ) and S itself (the codomain
of µS) satisfy the conditions of the next lemma, which is clear since I is discrete and B1 Ñ B is a
split opfibration. �
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Lemma 3.6. A strictly cartesian 2-natural transformation between polynomial 2-functors (be-
tween strict slices of Grpd) is also homotopy cartesian provided the codomain 2-functor Grpd{I Ñ
Grpd{J has its lowerstar component along a split opfibration, and the groupoid I is discrete.

Proof. Proposition 4.6.5 of [53] states that a strictly cartesian 2-natural transformation between
polynomial 2-functors (between strict slices of Grpd) is also homotopy cartesian if just the codomain
2-functor is familial [49], which essentially means that it preserves fibrations. On the other hand,
familiality is implied by the following slight variation of Theorem 4.4.5 of [50], whose notation we
use freely: in the proof given in [50], the condition that the lowershriek component is a fibration is
not needed. For the required factorisation of K{I Ñ K{B through UΦK,B one only needs s˚ and p˚
to lift to the level of fibrations, the rest of the proof goes as in [50]. �

Proposition 3.7. The category object D‚ :“ SF!R
‚A is a symmetric monoidal category object in

Grpd, and its structure maps b : SD‚ Ñ D‚ are cartesian and homotopy cartesian on degeneracy
maps and inner face maps.

The symmetric monoidal structure just comes from the fact that levelwise D‚ is S of something,
hence is in fact a free S-algebra. The cartesianness is just the cartesianness of the structure maps
of the monad S—this applies to all but the top face maps. Homotopy cartesianness follows from
Lemma 3.6.

3.8. The connected Green function. The (weak) slice Grpd{D1
contains a canonical element,

namely

G : C1 Ñ D1

which we call the connected Green function. Recalling that C1 “ F!RA and that D1 “ SF!RA, the
connected Green function is simply ηSF!RA

, the unit for the monad S, the inclusion of singleton families
into all families.

We shall also need to split G into its fibres over D0. Denote by w an object in D0 “ SF!A, a tuple
of objects in F!A. Write wpD1q for the homotopy fibre over w P D0 of the face map d1 : D1 Ñ D0

(reserving the notation pD1qw for the (homotopy) fibre over w P D0 of the other face map d0 : D1 Ñ
D0). For each w P D0, consider the (homotopy) pullback squares

wpC1q
❴
✤

//

Gw

��

C1

G

��

wpD1q
❴
✤

//

��

D1

d1
��

1
xwy

// D0

so that we have (as in 2.1)

G “

ż w

Gw.

Gw is thus the w-ary part of the connected Green function.
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Lemma 3.9. We have (homotopy) pullback squares

C1

��

C2

❴
✤✤

❴

d1oo

��

d0 // C1

��
D1 D2

d1oo

❴
✤

d0 //

d2
��

D1

d1
��

D1
d0

// D0

Proof. The top squares are cartesian since they are naturality squares for η : Id ñ S, and
homotopy cartesian by Lemma 3.6. For the bottom square, the assertion follows from 3.5. �

Stacking the right-hand squares we get the following result, which is an abstraction of the Key
Lemma 5.5 of [21].

Corollary 3.10. We have a canonical equivalence of groupoids

C2 » D1 ˆD0
C1.

This pullback we now split into its fibres over D0 as in Lemma 2.2:

Proposition 3.11. We have a canonical equivalence

C2 »

ż w

pD1qw ˆ wpC1q.

This equivalence is over D1 ˆ C1 and hence also over D1 ˆ D1.

This is the essence of the Faà di Bruno formula, as we proceed to explain in the following sections.
The groupoid C2 (with its map to D1 ˆ D1) is the left-hand side of the Faà di Bruno formula, and
şw

pD1qw ˆ wpC1q (with its map to D1 ˆ D1) is the right-hand side.
We now analyse the groupoid pD1qw, for w P D0 “ SC0. Recall that S is defined by the polynomial

1 Ð B1 Ñ B Ñ 1. For n P B, let n denote the fibre over n of the projection B1 Ñ B. With this

notation, the formula for evaluation of S reads SpXq “
şnPB

Mappn,Xq. The element w P D0 “

SC0 “
şnPB

Mappn, C0q thus amounts to a map w : n Ñ C0 (for some n).

Lemma 3.12. For fixed w : n Ñ C0, we have a canonical equivalence

pD1qw » Map{C0
pn, C1q “: Cw

1 .

Here n is considered over C0 via w, and C1 is considered over C0 via d0.

Proof. The map d0 : D1 Ñ D0 is S applied to d0 : C1 Ñ C0, and hence, by definition of S, can
be written

ż nPB
`

Mappn, C1q Ñ Mappn, C0q
˘

which for fixed n is just post-composition with d0 : C1 Ñ C0. The w-fibre of D1 Ñ D0 is therefore
computed by the standard slice-mapping-space fibre sequence (see [8]):

Map{C0
pw, d0q
❴
✤

//

��

Mappn, C1q

post d0

��

1
xwy

// Mappn, C0q.

�
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This lemma is an abstraction of Lemma 5.2 in [21]. It can be interpreted as saying that an
object of pD1qw is an n-tuple of elements in C1, with specified output colours given by the n-tuple
w : n Ñ C0. In the lemma we have already introduced the notation Cw

1 to reflect this interpretation.
The interpretation so far is phrased abstractly in terms of Ci, already with a view towards the

generalisations in Section 6. In fact we can unpack further, to get down to groupoids of operations
of the operad R. As a first step, we unravel the square in Corollary 3.10:

Lemma 3.13. The pullback square

C2

❴
✤

d0 //

d2˝η
��

C1

d2˝η
��

D1
d0

// D0

is naturally identified with the naturality square for φ,

(4)

F!RRA
❴
✤

F!Rα //

φRA
��

F!RA

φA
��

SF!RA
SF!α

// SF!A.

Proof. The square is composed of two squares as in Lemma 3.9, the bottom being in turn
composed of the two squares in (3). Altogether three squares are stacked, with sides η, then Sφ, then
µ. Now η and Sφ can be interchanged by naturality, and then η and µ cancel out, by the unit law of
S, leaving only the asserted square (4), naturality for φ. �

Now we unpack further. First note that F!A “ I and F!RA “ B, with reference to the polynomial
I Ð E Ñ B Ñ I representing R. The effect on objects of φA : B Ñ SI is to send an operation
b : pi1, ..., inq Ñ i to the input sequence pi1, ..., inq. The effect on objects of SF!α : SB Ñ SI is to
send a sequence of operations pb1, ..., bnq to the sequence of output colours of the bj . For an arbitrary
object w “ pi1, ..., inq of SI, the homotopy fibres wB and pSBqw of these functors are easily computed.
The groupoid wB has

‚ objects triples pρ, b, jq where ρ P Σn and b : piρ1, ..., iρnq Ñ j is an operation of R.
‚ arrows pρ, b, jq Ñ pρ1, b1, j1q are ψ P Σn such that ρ “ ρ1ψ and b “ b1ψ.

Thus wB is a groupoid of operations with input sequence some permutation of pi1, ..., inq. The
groupoid pSBqw has

‚ objects pairs pρ, pb1, ..., bnqq where ρ P Σn and bj P B such that tbj “ iρj for 1 ď j ď n.
‚ arrows pρ, pb1, ..., bnqq Ñ pρ1, pb1

1, ..., b
1
nqq are permutations ψ P Σn and pψ1, ..., ψnq, such that

ρ “ ρ1ψ and bj “ b1
ψpjqψj .

Thus pSBqw is a groupoid of n-tuples of operations with bijection associating output colours with
pi1, ..., inq. As in Lemma 3.12, it is natural to denote pSBqw as Bw. The groupoid C2 “ F!RRA

is the groupoid of operations of R labelled by operations of R, described explicitly in the proof of
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Proposition 3.6 of [51]. In pictorial terms, an object here is depicted as

b

b1 bk❇❇❇❇❇❇❇

⑤⑤⑤⑤⑤⑤⑤

...
i1 ik

i

✶✶✶✶✶

✌✌✌✌✌

...
i11 i1n1

✶✶✶✶✶

✌✌✌✌✌

...
ik1 iknk

Thus Proposition 3.11 unpacks to

Corollary 3.14. For any operad R, with notation as above,

C2 »

ż wPSI

Bw ˆ wB

over SB ˆ B.

in clear analogy with the classical Faà di Bruno formula, especially in the uncoloured case, I “ 1,
where it reduces to C2 »

şn
Bn ˆ nB.

4. Monoidal decomposition spaces and bialgebras

We now proceed to explain the bialgebra structure (at the groupoid level) in which to interpret
the equivalence established above. The actual work was done above; we just need to apply the results
of Gálvez–Kock–Tonks [23], and our task is only to explain how it works.

4.1. Decomposition spaces and coalgebras. The notion of decomposition space was intro-
duced in [23], as a generalisation of posets and Möbius categories for the purpose of defining incidence
coalgebras. A decomposition space is a simplicial groupoid X‚ : △op Ñ Grpd (in full generality a
simplicial 8-groupoid) satisfying an exactness condition ensuring that the canonical span

(5) X1
d1ÐÝ X2

pd2,d0q
ÝÑ X1 ˆ X1

induces a homotopy-coherently coassociative coalgebra structure on Grpd{X1
in a sense we shall now

detail. The precise exactness condition is not necessary in the present work: all we need to know is
that Segal spaces are decomposition spaces [23, Proposition 3.5].

The idea behind the coalgebra construction is simple, and goes back to Leroux [39]: an arrow f

of a category object is comultiplied by the formula

∆pfq “
ÿ

b˝a“f

a b b.

The sum is over all ways of factoring f into two arrows, generalising the way intervals are comultiplied
in the classical incidence coalgebra of a poset [30]. The above span (5) defines a linear functor

Grpd{X1

pd2,d0q!˝d1̊ÝÑ Grpd{X1ˆX1

which is precisely the objective version of ∆: pullback to X2 means taking all triangles with long
edge f , and then the lowershriek means returning the two short edges. (Linear functor means that it
preserves homotopy sums; the linear functors are precisely those given by pull-push along spans [22].)

Similarly, the span

X1
s0ÐÝ X0

u
ÝÑ 1
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defines the linear functor

Grpd{X1

u!˝s0̊ÝÑ Grpd

which is the counit for ∆.
Altogether, Grpd{X1

becomes a coalgebra object in the symmetric monoidal 2-category pLIN ,b,Grpdq
[22], whose objects are (weak) slices and whose morphisms are linear functors. The monoidal struc-
ture b is given by the formula

Grpd{A b Grpd{B “ Grpd{AˆB

with neutral object Grpd{1, and the symmetry is induced by the canonical symmetry of the cartesian
product.

4.2. Monoidal decomposition spaces. In general, a sufficient condition for a simplicial map
f : Y‚ Ñ X‚ between decomposition spaces to induce a coalgebra homomorphism on incidence
coalgebras, is that f be CULF [23], which stands for conservative (meaning that it does not invert
any arrows) and unique lifting of factorisations (meaning that for an arrow a P Y1, there is a one-
to-one correspondence between the factorisations of a in Y‚ and the factorisations of fpaq in X‚). A
simplicial map is CULF precisely when it is homotopy cartesian on degeneracy maps and inner face
maps [23].

Recall that a bialgebra is a monoid object in the category of coalgebras, meaning that multi-
plication and unit are homomorphisms of coalgebras. Accordingly, in order to induce a bialgebra
structure on Grpd{X1

, we need on X‚ a monoidal structure which is CULF. This motivates defin-
ing a monoidal decomposition space [23] to be a decomposition space X‚ equipped with a monoidal
structure b : SX‚ Ñ X‚, whose structure maps are CULF.

4.3. Bialgebra structure on Grpd{D1
. Coming back now to the simplicial groupoid D‚ “

SF!R
‚A, we have precisely such a symmetric monoidal structure, namely given by the multiplication

map µS : SpSF!R
‚Aq Ñ SF!R

‚A, which is CULF by Proposition 3.7. In conclusion, by Theorem 7.3
and Proposition 9.5 of [23], we have:

Proposition 4.4. The slice category Grpd{D1
is a bialgebra object in pLIN,b,Grpdq.

With the current choice of S it is even a ‘symmetric’ bialgebra, meaning that the homotopy cardinality
will be a commutative bialgebra, as we shall see in the next section.

We can now give the bialgebra reformulation of the equivalence in Proposition 3.11, which is the
Faà di Bruno formula at the objective level:

4.5. Theorem. We have the following equivalence in Grpd{D1ˆD1
:

∆pGq “

ż w

Gw ˆ Gw.

5. Finiteness conditions and homotopy cardinality

When working at the objective level of groupoid slices, the results so far hold for any operad R.
However, in order to take cardinality, it is necessary to subject R to certain finiteness conditions [24].

In this section we explain the procedure of taking homotopy cardinality, following [22]. In that
paper, the setting is that of 8-groupoids, but everything works also for 1-groupoids [8].
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5.1. Homotopy cardinality of groupoids and slices [22]. A groupoid X is called homotopy
finite when it has only finitely many connected components, and all its automorphism groups are
finite. In that case, the homotopy cardinality of X is defined as

|X| :“
ÿ

xPπ0X

1

|Aut x|
.

Let grpd (lowercase) denote the category of finite groupoids.
Groupoids of combinatorial objects are not usually finite, because they have infinitely many

components, but they usually have finite automorphism groups. Such groupoids are called locally
finite [22]. From now on we assume that all groupoids are locally finite. For X a locally finite
groupoid, the basic vector space is Qπ0X , the free vector space on the set of iso-classes of objects in
X . We denote the basis elements δx (for x P π0X). Since linear combinations in a vector space are
finite by definition, the correct groupoid slice to consider is grpd{X of finite groupoids over X . The
cardinality of an element A Ñ X in grpd{X is the vector

ÿ

xPπ0X

|Ax|

|Aut x|
δx P Qπ0X .

Linear maps Qπ0X Ñ Qπ0Y are modelled by linear functors grpd{X Ñ grpd{Y , in turn given by
spans of finite type

X
p

Ð M
q

Ñ Y,

meaning that p is a finite map (i.e. has homotopy-finite homotopy fibres).
The notion of homotopy cardinality has all the expected properties: it takes equivalences to

equalities, it preserves products, sums, quotients—and hence homotopy sums; it takes monoidal
structures to monoids.

5.2. Locally finite decomposition spaces. For X‚ a decomposition space, we consider the
finite-groupoid slice grpd{X1

Ă Grpd{X1
, which is well behaved assuming X1 is locally finite. For

the coalgebra structure maps ∆ : Grpd{X1
Ñ Grpd{X1ˆX1

and ε : Grpd{X1
Ñ Grpd to descend

to the finite slice grpd{X1
it is therefore sufficient to require that d1 : X2 Ñ X1 and s0 : X0 Ñ X1

be finite maps. Decomposition spaces with this property (and X1 locally finite) are called locally
finite [24, §7] (extending the notion for posets [30]). (It may be noted that there are no conditions
on the algebra structure: it always descends to finite-groupoid slices, since it is a pure lowershriek
operation.)

5.3. Locally finite operads (and monads). Coming back to operads, we can ensure the
local finiteness condition on D‚ by the following requirement. Call a monad R locally finite when
µ : RR ñ R and η : Id ñ R are finite natural transformations (i.e. all components are finite maps).
What it amounts to is that for every operation r, there are only finitely many ways of writing it

r “ b ˝ pa1, . . . , anq

for b an n-ary operation (and ai operations whose arities add up to that of r).
As an non-example, the commutative monoid monad S is not locally finite, because the identity

operation u P S1 could be obtained in infinitely many ways as a composition: by filling n´ 1 nullary
operations into an n-ary operation (for all n). In contrast, cf. Example 7.1 below, the commutative
semimonoid monad S` is locally finite, since there are no nullary operations to screw things up. Let
us observe that the existence of nullary operations is not formally an obstruction to being locally
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finite, as long as they are not subject to relations. For example, every free monad (on a polynomial
endofunctor) is locally finite, cf. Example 7.4 below.

The local finiteness of R makes makes C‚ locally finite (it is not quite a simplicial object, because
the top face maps are missing, but its does feature the face and degeneracy maps on which the
condition is measured). Since F! and S preserve finite maps, D‚ is also locally finite.

5.4. The connected Green function as a homotopy cardinality. The connected Green func-
tion lives in the completion of Qπ0D1

, where we allow infinite sums (but not infinite coefficients). This
(profinite-dimensional) vector space arises as the homotopy cardinality of the bigger slice Grpdrel.fin.

{D1

whose objects are finite maps E Ñ D1 (but E itself not required finite). The relevant notion of linear
map (continuous in a certain ‘pro’ sense) are given by spans

X
p

Ð M
q

Ñ Y

where instead the right leg q is finite [22].
In order to formulate the Main Theorem at the vector space level, we have to justify that the

comultiplication extends to this bigger slice, which is to say we must check that D1ˆD0
D1 Ñ D1ˆD1

is a finite map. This is a standard argument [22]: this map sits naturally in a homotopy pullback
square

D1 ˆD0
D1

❴
✤

//

��

D0

diag.

��
D1 ˆ D1

// D0 ˆ D0

so it is enough to show that the diagonal D0 Ñ D0 ˆD0 is finite. It is automatically discrete (i.e. 0-
truncated) since D0 is 1-truncated, and the homotopy fibre at a point pw,wq is essentially the set of
automorphisms of w, which is finite (for all w) if and only if D0 is locally finite. Since we have already
assumed that D1 is locally finite, and that s0 : D0 Ñ D1 is finite, it follows that D0 is again locally
finite. Therefore, the comultiplication extends to the bigger slice Grpdrel.fin.

{D1
as required. It may

be noted that the counit does not extend to Grpdrel.fin.
{D1

. This would require D0 Ñ 1 to be a finite

map, which is never the case since it is S of something. This means that the coalgebra Grpdrel.fin.
{D1

is
not counital. This is not really an issue: our main interest is the counital coalgebra grpd{D1

. The

extension to Grpdrel.fin.
{D1

is introduced only to be able to state the Faà di Bruno formula efficiently
in terms of the connected Green function—it does not involve the counit at all.

5.5. Cardinality of the main equivalence. We assume now that R is locally finite, and
proceed to take homotopy cardinality of the main equivalence. For clarity, we temporarily use
underline notation for the symbols at the algebra level. By construction, the family G : C1 Ñ D1 has
cardinality G, and the linear functor ∆ has cardinality ∆. Hence the left-hand side of the equation
is clear: the cardinality of C2 is ∆pGq.

For the right-hand side, note first that cardinality preserves homotopy sums (i.e. transforms the
integral into a sum over π0 divided by symmetry factors). Now pD1qw » Cw

1 (as an object over D1)
has cardinality Gw, and Gw has cardinality Gw. In conclusion, homotopy cardinality of the main
groupoid equivalence yields the Faà di Bruno formula at the algebraic level (where we no longer write
underlines):

5.6. Theorem. In the incidence bialgebra of a locally finite operad R we have

∆pGq “
ÿ

w

Gw b Gw{ |Autpwq| .
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6. Generalisations

So far we have treated the case of the terminal algebra for an operad. Several generalisations
follow readily by closer inspection of the constructions and proofs, as we proceed to explain.

6.1. Non-discrete colours. In the polynomial monads corresponding to operads, the groupoid
of colours I is discrete. We wish to give up that condition, because there are interesting examples
with non-discrete I, namely operads in groupoids (cf. 7.5 and 7.6 below). The only place where the
discreteness condition was used, was in the proof of Proposition 3.5, where it ensured that the strictly
cartesian 2-natural transformation φ : F!R ñ SF! is also homotopy cartesian. But in fact we needed
this only for naturality squares on arrows of the type F!α (and S applied to those). If instead we
require F!α to be a fibration, we can draw the same conclusion and establish Proposition 3.5 again,
without discreteness assumptions. F!α is precisely the map of groupoids B Ñ I in the diagram
defining R, so we impose now the condition that this is a fibration. (Note that it is always a fibration
when I is discrete.)

6.2. Algebras. The second generalisation is to note that to set up the Segal space D‚, we did
not rely on the algebra α : RA Ñ A being the terminal algebra. In fact, all the arguments in the
construction work exactly the same for any (strict) R-algebra. We should still require, though, that
F!α is a fibration of groupoids (or that I is discrete).

6.3. General S. So far we have assumed that S is the symmetric monoidal category monad,
so that monads R over it correspond to operads (and operads in groupoids). In fact, all the results
generalise readily to any general finitary polynomial monad S (although for simplicity, we assume
that the maps in the representing polynomial diagram are fibrations): the general situation concerns
any cartesian monad morphism between polynomial monads

R
F
ñ S

and leads to R-algebras internal to categorical S-algebras (as developed by [2, 3, 4, 48, 52]). The
fibrancy condition on pA, αq is still required, of course.

One thing that changes when S is no longer the symmetric monoidal category monad is that the
category object D‚ is no longer symmetric monoidal but is instead a categorical S-algebra, now for
the general S. Each choice of S will give a new ambient setting, and a new notion of connectedness:
the connected Green function will always be given by the unit of the monad.

Since the proofs in Section 2 did not actually use other properties of the monad S than being
polynomial, cartesian and homotopy cartesian, we get immediately in this more general situation:

Proposition 6.4. Grpd{D1
is an S-algebra in CoalgpLINq.

Accordingly, taking cardinality will yield an S-algebra object in the category of coalgebras, or,
equivalently, a comonoid in the category of S-algebras.

In the operad case, the setting for the Faà di Bruno formula is a free algebra (or more precisely a
power-series ring), and it is straightforward to interpret the exponent w in the left-hand factor Gw:
it is simply G multiplied with itself w times, where in reality w represents the shape of a list of things
to be multiplied. For general S, the exponent w represents the shape of an S-configuration, and Gw

denotes such a configuration of elements in G, which can be multiplied using the (free) S-algebra
structure. The precise meaning of the exponent is given in 3.12, and hopefully the examples will
clarify this point.



FAÀ DI BRUNO FOR OPERADS 19

The most obvious alternative to the symmetric monoidal category monad is to take S to be
the (nonsymmetric) monoidal category monad, which amounts to considering nonsymmetric oper-
ads. The outcome are noncommutative bialgebras, and some kind of noncommutative Faà di Bruno
formula. See Example 7.7 below.

7. Examples

In the first few examples we maintain as S the symmetric monoidal category monad. Hence the
bialgebras will be free commutative. We also keep a discrete groupoid of colours.

7.1. Classical Faà di Bruno. Take R to be S`, the polynomial monad for commutative semi-
monoids. It is like S, but omitting the nullary operation. It is the terminal reduced operad Comm`

(the word ‘positive’ is also used instead of ‘reduced’ [1]). One can check that the bar category D‚

is then the fat nerve (see [23, 2.14]) of the category of finite sets and surjections. Indeed, D0 is
S1, which is equivalent to the groupoid of finite sets and bijections—this is also degree 0 of the fat
nerve. Next, D1 is SS`1, the groupoid of symmetric lists of nonempty symmetric lists of 1s, naturally
equivalent with the groupoid of surjections, degree 1 of the fat nerve. The same identifications work
for general n. This fat nerve is symmetric monoidal under disjoint union, and the resulting bialgebra
is the classical Faà di Bruno bialgebra (this observation goes back to [31]; see [25] for an elaboration),
and the resulting Faà di Bruno formula is the classical one.

7.2. Multivariate Faà di Bruno. We consider the multi-variate version of the previous example.
Let I be a set of colours. Let R be the operad whose n-ary operations are pn ` 1q-tuples of colours
(and without nullary operations). The symmetries are colour-preserving bijections respecting the
base point. One may think of these operations as corollas whose leaves and root are decorated with
elements in I. The substitution operation takes a two-level trees with decorated edges and contracts
the inner edges, simply forgetting their colours. Note that since the inner-edge colours are simply
lost in this process, many substitutions give the same result. For this reason, in order for R to be
locally finite we must demand I to be a finite set.

The bar construction of R is the category object in groupoids with D0 the free groupoid on I,
that is, tuples of colours and colour-preserving bijections. D1 is the groupoid whose elements are
coloured surjections, and whose arrows are pairs of colour-preserving bijections. We point out that
this Segal groupoid is not Rezk complete (see [24] for discussion of this issue): for any two colours
i and j there is a unary operation i Ñ j, with inverse j Ñ i. These invertible unaries do not come
from D0, which only contains colour preserving bijections.

The bialgebra resulting from D‚ is the polynomial algebra generated by symbols Aw,i with i P I
and w a nonempty word in I, one generator for each iso-class of connected coloured surjections.
Closely related to the non-Rezk-ness of D‚ is the fact that the identity surjections are not group-like.
Indeed, we have

∆pAi,iq “
ÿ

jPI

Ai,j b Aj,i

expressing that the identity i Ñ i admits factorisations i Ñ j Ñ i. This bialgebra is precisely
the dual to composition of multi-variate power series; more precisely I-tuples of power series in I-
many variables. (The linear (unary) part of this substitution is simply matrix multiplication, and
we recognise indeed the above formula as dual to the formula for the ith diagonal entry in a matrix
product.)

7.3. Algebras. Continuing the case R “ S`, let A be an S`-algebra, i.e. a commutative semi-
monoidal groupoid. As in the two previous examples, the resulting bar construction D‚ is a certain
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groupoid-enriched category of decorated surjections, but this time the decorations on each corolla
are by elements in A such that the output colour is the semimonoid product of all the input colours.
In particular, there are no unary operations i Ñ j for i ‰ j, and it follows readily that D‚ is Rezk
complete this time, just as in 7.1.

The coalgebra structure does not change much from that in 7.1, because only the underlying
surjection really matters: the possible decorations in the factorisations are completely determined by
the decorations of the original surjection.

In the next three examples, we give up the requirement that I is discrete.

7.4. Free operads (Faà di Bruno for trees [21]). Let P be any finitary polynomial endo-
functor, and let R denote the free monad on P . Its operations are the P -trees. Assuming that the
groupoid P1 is locally finite, also the groupoid of P -trees is locally finite, and the factorisations of
operations amount to cuts in trees (as in [35]), and since a given tree admits only finitely many
cuts, it follows that R is locally finite. The resulting bialgebra is the P -tree version ([35]) of the
Butcher–Connes–Kreimer Hopf algebra [12] (but note that it is a bialgebra not a Hopf algebra: it
fails to be connected for the node grading, because all the nodeless forests are of degree 0). The
corresponding Faà di Bruno formula is that from [21].

The core of a P -tree is the combinatorial tree obtained by forgetting the P -decoration and shaving
off leaves and root [35]. Taking core defines a bialgebra homomorphism from the bialgebra of P -
trees to the usual Butcher–Connes–Kreimer Hopf algebra, thereby producing Faà di Bruno sub-Hopf
algebras, including virtually all the ones of Bergbauer and Kreimer [5] (but not those of Foissy [20],
whose grading is of a different nature); (see [37] for these results).

In the next example, it is interesting also to consider arbitrary algebras.

7.5. Node substitution in trees: the monad for operads. Symmetric operads are themselves
algebras for a polynomial monad R; it is given by

B Ð T˚ Ñ T Ñ B

where (as usual) B is the groupoid of finite sets and bijections, T is groupoid of rooted (operadic)
trees, and T˚ is the groupoid of rooted (operadic) trees with a marked node. The map B Ð T˚

returns the set of incoming edges of the marked node, T˚ Ñ T forgets the mark, and T Ñ B returns
the set of leaves. An R-algebra is thus a map A Ñ B (which should be required to be a discrete
fibration in order to get the usual notion of Set-operad), whose (homotopy) fibre over n P B is
thought of as the set of n-ary operations. RA is the groupoid of trees whose nodes are decorated by
operations in A, and the monad structure α : RA Ñ A gives precisely the operad substitution law,
prescribing how to contract a whole tree configuration of operations to a single operation.

To ensure local finiteness of R, one should exclude the trivial tree, and the resulting notion of
operad is then that of non-unital operad.

The incidence bialgebra of R, corresponding to the terminal operad, is the slice Grpd{T but with
a comultiplication different from that in Example 7.4: a tree t is comultiplied

∆ptq “
ÿ

subtree covers

ś

i si b q

by summing over all ways to cover the tree with subtrees si, disjoint on nodes, then interpreting
those subtrees as a forest

ś

i si (the left-hand tensor factor), and contracting each subtree si to a
corolla to obtain a quotient tree q (the right-hand tensor factor).

Taking cores constitutes a bialgebra homomorphism to the Hopf algebra of trees of Calaque–
Ebrahimi-Fard–Manchon [7], which is of interest since it governs substitution of Butcher series in
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numerical analysis [10]. Our general result now gives a Faà di Bruno formula in the incidence
bialgebra, and via the core homomorphism a Faà di Bruno sub-bialgebra in the Calaque–Ebrahimi-
Fard–Manchon Hopf algebra, which seems not to have been noticed before.

For general R-algebras A, i.e. operads, the constructions and descriptions are the same, except
that the trees are now A-trees, i.e. trees decorated with A-operations on the nodes. The bialgebra
has the same description again, but it should be noted that contracting a subtree to a corolla, and
still obtain an operation to decorate the resulting node with, involves the operad structure of A.

7.6. Feynman graphs. The 1PI connected Feynman graphs for a given quantum field theory
form the operations of an operad in groupoids [38], which we now take as R: let I denote the groupoid
of interaction labels (connected graphs without internal lines), let G denote the groupoid of all 1PI
connected Feynman graphs with residue in I, and let G˚ denote the groupoid of all such graphs, but
with a marked vertex. The polynomial representing the operad R is

I
s

Ð G˚ p
Ñ G

t
Ñ I

where s returns the marked vertex, p forgets the marking, and t returns the residue of the graph.
The monad multiplication is given by substitution of graphs into vertices. The resulting bialgebra is
the bialgebra version [36] of the Connes–Kreimer Hopf algebra of graphs [13]. The connected Green
function is the standard (bare) combinatorial Green function in quantum field theory [5], and the
Faà di Bruno formula is a non-renormalised version of the formula of van Suijlekom [47].

We now pass to the noncommutative setting: S is now the monoidal category monad, so that
polynomial monads over it are nonsymmetric operads. The resulting bialgebras at the vector-space
level are now free noncommutative.

7.7. The noncommutative Faà di Bruno bialgebra. Let R be the reduced part of S, i.e. the
semimonoid monad. The polynomials representing these monads are

1

��

N1
ą0

oo

❴
✤

//

��

Ną0

��

// 1

��
1 N1oo // N // 1

where the set of natural numbers N is a skeleton of the groupoid of finite ordered sets and monotone
bijections, and N1 is a skeleton of the groupoid of finite pointed ordered sets and basepoint-preserving
monotone bijections. Hence the fibre of N1 Ñ N over n is the linear order n.

The bar construction is the fat nerve of the category of linearly ordered finite sets and monotone
surjections. Since linearly ordered sets have no automorphisms, this is equivalent to the strict nerve
of any skeleton of the category. The bialgebra in this case is the (dual) Landweber–Novikov bialgebra
from algebraic topology (see for example [41]), which is called the noncommutative Faà di Bruno
bialgebra by Brouder, Frabetti and Krattenthaler [6]. It is also isomorphic (over Q) to the Dynkin–
Faà di Bruno bialgebra, introduced in the theory of numerical integration on manifolds by Munthe-
Kaas [42]; see also [16]. In the connected Green function and in the Faà di Bruno formula, the

homotopy sum
şk

is now an ordinary sum
ř

k since there are no symmetries present. The formula

∆pAq “
ÿ

k

Ak b Ak

is precisely the noncommutative Faà di Bruno formula of [6], modulo the shift in indexing mentioned
in 1.6.
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One may consider also a multivariate version of this noncommutative Faà di Bruno bialgebra,
proceeding as in 7.2, but without symmetries. The case of two variables is treated in [6].

7.8. Braided operads. Take S to be the braided monoidal category monad, which is polynomial,
represented by the classifying space of the braid groups. Taking R to be the commutative monoid
monad (denoted S in the earlier sections), we obtain a braided version of the Faà di Bruno bialgebra,
corresponding to the simplicial groupoid D‚ whose codescent object is the category of vines [52].
The braiding is only manifest at the groupoid level though, as taking cardinality turns the braided
monoidal structure into a commutative monoid.

To finish we consider a few silly examples of S just to illustrate different instances of the Faà di
Bruno formula in certain degenerate situations.

7.9. Two rather trivial examples. Let S be the identity monad. A monad cartesian over S is
then precisely a small category. The finiteness condition is then for that category to be locally finite.

The S-algebra structure is void, so the result of the construction is the usual incidence coalgebra of
the category [23]. The connected Green function G is then simply the sum of all arrows (everything
is connected). We have G “

ř

k gk where k runs over all the objects and gk denotes the set of arrows
with domain k. The Faà di Bruno formula reads

∆pGq “
ÿ

k

Gk b gk.

Here Gk is the groupoid of 1-tuples of arrows with codomain k.
In the special case where R is just a monoid (i.e. a category with only one object), then the

finiteness condition amounts to the finite-decomposition property of Cartier–Foata [9], and the Faà
di Bruno formula reduces to

∆pGq “ G b G

—the connected Green function is group-like in this case.
As a slight elaboration on this example, take S to be the pointed set monad. This will yield a

pointed comonoid. The resulting Faà di Bruno formula has only two terms.
Let’s take the one-object case. A monad over S is a monoid M together with a left module E.

One can think of this as an operad with only nullary operations E and unary operations M . The
generators for the pointed coalgebra is the set D1 “ 1`E `M . We have ∆p1q “ 1b 1, and for each
e P E we have ∆peq “ 1 b e `

ř

xm“e x b m (with x P E and m P M). Finally for a P M we have
∆paq “

ř

nm“a n b m.
Inside D1, the connected Green function is given by G “ E ` M Ă 1 ` E ` M . We have

∆pGq “ 1 b E ` G b M.

In a tree interpretation, this says that the ‘cuts’ are either empty-followed-by-nullary or anything-
followed-by-unary.
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