
Operads within monoidal pseudo algebras

Mark Weber

Abstract. A general notion of operad is given, which includes:
(1) the operads that arose in algebraic topology in the 1970’s to characterise

loop spaces.
(2) the higher operads of Michael Batanin [Bat98].

(3) braided and symmetric analogues of Batanin’s operads which are likely

to be important in the study of weakly symmetric higher dimensional
monoidal categories.

The framework of this paper, links together 2-dimensional monad theory, op-

erads, and higher dimensional algebra, in a natural way.

1. Introduction

Operads arose first in the early 1970’s in algebraic topology [BV73] [May72]
to keep track of the combinatorial data that characterises infinite loop spaces.1 In
the most basic situation, one has a braided monoidal category (V, I,⊗), and defines
an operad to be a sequence of objects (pn : n ∈ N) of V, together with maps

I → p1

pk ⊗ (pn1 ⊗ ...⊗ pnk
) → pn

where n =
∑
i ni. This data satisfies some axioms, that ensure that it is sensible to

regard each object pn, as an object of n-ary operations, and the maps as expressing
the process of substitution of operations. The pn and the corresponding maps
are called a non-symmetric operad within the braided monoidal category (V, I,⊗).
For applications, V can be some category of spaces, chain complexes, differential
graded algebras, or simplicial sets. Typically, V is actually a symmetric monoidal
category, one has symmetric group actions on each pn, and asks that these actions
be compatible with the substitution. Such an operad is known as a symmetric
operad within a symmetric monoidal category.

Beginning with insights of Todd Trimble [Tri], and then in the work of Michael
Batanin [Bat98], operads were shown to be fundamental for the explicit com-
binatorial description of higher dimensional categorical structures. However, the
operads used in higher dimensional algebra are typically somewhat more intricate
than those originally conceived to characterise loop spaces, although the basic idea
of formalising some notion of substitution remains the same.

1For more on the history of operads and their recent resurgence in modern mathematics see
[MMS02].
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In [Bat98] as part of an approach to defining weak ω-categories, Batanin con-
ceived of a notion of higher operad internal to a structure he called an augmented
monoidal globular category. This new operad notion is more complicated for two
reasons. First, monoidal categories are replaced by the more complicated aug-
mented monoidal globular categories. Second, natural numbers n as the place
holders of the objects pn of the sequence, are replaced by trees. Just as addition
of natural numbers may be regarded as a consequence of the notion of monoidal
category in that N with its addition is the strict monoidal category freely gener-
ated by one object, trees and their arithmetic operations (pasting of trees), are
encapsulated by the notion of monoidal globular category.

The notion of operad defined in this paper formalises this phenomenon in the
following way. One begins with a 2-monad T on a 2-category K whose job is two-
fold:

(1) To describe the external structure within which the corresponding op-
erads live. For example, to define non-symmetric operads one takes T
to be the 2-monad M on CAT whose algebras are monoidal categories.
Non-symmetric operads live inside braided monoidal categories, which are
expressed here as monoidal pseudo algebras for the 2-monad M.

(2) To encapsulate the “indexing type”. For example a sequence p of objects
in V is nothing but a functor p : M(1)→V because M(1) = N. The
monad structure of M expresses the addition of natural numbers, which
is necessary for the definition of non-symmetric operad.

An operad is then defined relative to T . In this way a unified formalism for the
operads originally considered in algebraic topology and those of interest to higher
dimensional algebra is achieved, with different operad notions obtained by varying
T .

The idea central to this definition, is to regard the external structure as com-
posed of two parts: a pseudo algebra structure for the 2-monad, together with
a compatible pseudo monoid structure. Taken together one has the notion of
monoidal pseudo algebra described in this paper. The origin of this idea is in the
observation that when one describes the substitution maps for a non-symmetric
operad

pk ⊗ (pn1 ⊗ ...⊗ pnk
) → pn,

there are really two different types of tensor product at work. One has a binary
tensor product as in pk ⊗ (...), and k-ary tensor products as in pn1 ⊗ ... ⊗ pnk

.
The binary tensor product is formalised as the pseudo monoid structure, and the
k-ary tensor products are formalised as the pseudo M-algebra structure. Their
compatibility implies that they can be identified (as is the usual custom), and
that the resulting monoidal structure is braided. The braiding is necessary for the
expression of one of the operad axioms (associativity of substitution).

The study of higher-dimensional braids and tangles, as well as the homotopy
groups of spheres, motivates the consideration of the various notions of monoidal
n-category. A k-tuply monoidal weak n-category is a weak (n + k)-category with
one cell in each dimension less than k. Such a structure is considered as being
n-dimensional by reindexing appropriately, that is, by regarding the m-cells (for
m ≥ k) of the original weak (n+ k)-category as (m− k)-cells in this new structure.
For example, a 2-tuply monoidal tricategory is a braided monoidal category, and
a braiding is a subtler notion of symmetry for monoidal categories than the usual
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one. Thus, one expects these k-tuply monoidal weak n-categories in general, to be
higher dimensional monoidal categories which possess still more subtle symmetry.

Motivated by insights from homotopy theory, [BD98] give three hypotheses
relating such structures to quantum topology. The first is that the n-cells of the
free k-tuply monoidal weak n-category on one object correspond to “n-braids in
(n + k) dimensions”, which are certain n-dimensional surfaces embedded in the
(n + k)-dimensional cube. The case n = 1 and k = 2 gives the usual definition of
braid, which corresponds to the morphisms of the free braided monoidal category
on one object. Second is the corresponding hypothesis for weak n-groupoids, which
relates to the fundamental n-groupoid of the k-fold loop space of the k-sphere.
Finally, it is predicted that the n-cells of the free k-tuply monoidal weak n-category
with duals correspond to “framed n-tangles in (n + k) dimensions”, which again
are certain n-dimensional surfaces embedded in the (n+k)-dimensional cube. This
time the case n = 1 and k = 2 corresponds to the usual definition of tangle which
has been shown to correspond to the free braided monoidal category with duals on
one object.

An important motivation for this work is to define braided and symmetric
analogues of higher operads, to facilitate the study of these weakly symmetric
higher dimensional categories. With the general operad definition at our disposal,
this problem is reduced to finding appropriate 2-monads, which blend together the
combinatorics of higher operads with braids and symmetries in a natural way. The
2-monad that parametrises Batanin’s higher operads is denoted by T and acts on
the 2-category [Gop,CAT] of globular categories. Moreover there are 2-monads
B and S on CAT which parametrise braided and symmetric operads in the usual
sense.

The appropriate 2-monads alluded to above are obtained by regarding B and
S as 2-monads on [Gop,CAT] in an obvious way, and seeing that there are dis-
tributive laws between these 2-monads and T . The existence of these distributive
laws is deduced from an alternative description of the category ω-Cat, of strict
ω-categories, due to Clemens Berger [Ber02].

As observed in [Lei03] and [Str00], the higher operads which are actually used
in [Bat98] to define weak ω-categories, all live in a particular augmented monoidal
globular category called Span, and admit a far simpler description. One has the
monad on T0 on [Gop,Set] the category of globular sets whose algebras are strict ω-
categories, and a higher operad in Span amounts to a cartesian monad morphism
φ0 : R0→T0. That is, a monad R0 on [Gop,Set], and a natural transformation
φ0 which is compatible with the monad structures, and whose naturality squares
are pullbacks. We call such higher operads basic higher operads. On the other
hand, [Bat02] uses the full generality of the higher operad notion for applications
to loop spaces. So, while basic higher operads suffice for the definition of weak ω-
category presented in [Bat98], it seems that general higher operads are important
for applications.

In this paper we must speak of two set theoretic universes U1 ∈ U2 and dis-
tinguish between Set, the category of U1 small sets and functions between them,
and SET, the category of U2 small sets. Similarly we distinguish between the
corresponding 2-categories Cat and CAT of categories. So Set and Cat may be
regarded as objects of CAT, as may many of the other categories that one encoun-
ters in applications of operads: categories of spaces, chain complexes, differential
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graded algebras and simplicial sets. The reason for this distinction is that the
2-monads T on 2-categories K that parametrise operad notions, apply at the U2

level. For example, the monad M on CAT that parametrises non-symmetric op-
erads within braided monoidal categories. The braided monoidal categories within
which our operads live are objects of CAT.

Having made this distinction, it is worth noting on the other hand, that most
general categorical and combinatorial constructions do not depend on such consid-
erations, that is, they are “universe-insensitive”. This is part of the reason why
such size issues are often glossed over. However in [Str00] such distinctions are
shown to be pertinent to the organisation of the combinatorics and category theory
which underlies higher dimensional algebra.2 As part of such distinctions, we have
used the notation φ0 : R0→T0 to denote a basic higher operad, which is a mor-
phism of monads on [Gop,Set]. The universe insensitivity alluded to above means
that φ0 could be regarded instead as a monad morphism on [Gop,SET], and then
taking internal category objects (which is 2-functorial) induces what we denote by
φ : R→T – the corresponding 2-monad morphism on [Gop,CAT]. This notation
is convenient for us, because the distributivity of braids and symmetries with T
mentioned above, is actually more general – one can replace T with R for any basic
higher operad φ0. For example, R0 could be a monad on [Gop,Set] whose algebras
are weak ω-categories in the sense of [Bat98]. In this way our formalism provides
for each basic higher operad φ0, a corresponding general notion of higher operad
(as R operads in our sense), as well as braided and symmetric analogues of these.

This paper is organised as follows. Sections (2) and (3) review 2-monads and
their algebras, and pseudo monoids, assuming familiarity with the usual categorical
notions of monad and monoid. Monoidal pseudo algebras are introduced in section
(4), and in section (5), operads and their algebras are defined in full generality.
The examples presented in sections (2)–(5), taken together, exhibit how the con-
ventional operad notions are captured by our formalism. Then in section (6), after
briefly recalling the relevant background on the globular approach to higher cate-
gory theory, the higher operads of [Bat98] are described as instances of our general
operads. We begin section (7) by recalling the characterisation from [Ber02] of the
category algebras of a basic higher operad. This is then re-expressed in the language
of sketches, which then allows the easy explanation of the formal distributivity of
symmetries and braids with basic higher operads.

2. 2-monads and pseudo algebras

In this section we recall the basic and well known notions and terminology
of 2-dimensional monad theory, as well as the examples important to the present
work.

Recall that a 2-monad (T, η, µ) on a 2-category K consists of an endo-2-functor
T of K, together with 2-natural transformations η : 1 =⇒ T and µ : T 2 =⇒ T ,

2In [Web] these issues are discussed further, and following [SW78], [Str74] and [Str80],
the relevant size issues are axiomatized.
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called the unit and multiplication, so that

T
ηT //

1T   A
AA

AA
AA

A T 2

µ

��

T
Tηoo

1T~~}}
}}

}}
}}

T

T 3
µT //

Tµ

��

T 2

µ

��
T 2

µ
// T

commute. We shall allow the usual abuse of referring to the 2-monad T , omitting
reference to the unit and multiplication. Most of the examples of 2-monads of
interest to us shall now be described, and for many more examples and further
detail on 2-dimensional monad theory, the reader should consult [BKP89].

Examples 2.1. (1) Every monad (T, η, µ) on a category E can be re-
garded as a 2-monad, by regarding E as a locally discrete 2-category (that
is, one with only identity 2-cells).

(2) For each K one obtains the identity monad 1K on K, by taking T , η, and
µ to be identities.

(3) Let E be a category with pullbacks, and (T, η, µ) be a monad on E such
that T preserves pullbacks. One can then take K to be the 2-category
Cat(E) of categories internal to E . This process of taking the 2-category
of internal categories is the object map of a 2-functor

PB
Cat // 2CAT

from the 2-category of categories with pullbacks, pullback preserving func-
tors and natural transformations between them, to the 2-category of 2-
categories, 2-functors and 2-natural transformations. Applying this 2-
functor, one obtains a 2-monad Cat(T ) on Cat(E).

(4) As an instance of (3), take E to be SET and T the monoid monad on
SET. We denote by M the 2-monad Cat(T ) on CAT. An object of
M(X) is a sequence of objects from X, that is, a functor x : n→X where
n ∈ N is being regarded as the discrete category whose object set is
n = {0, ..., n− 1}. A morphism f : x→y in M(X) is a 2-cell

n

x
!!

y

==Xf�� ,

and so is just a sequence of maps in X. The 1 and 2-cell mappings for
M are obtained by composition in the evident fashion. The unit for the
monad picks out the sequences of length one, and the multiplication is
given by concatenation of sequences.

(5) [JS93] Denote by Brn the n-th braid group. We shall denote by B the
following 2-monad on CAT. An object of B(X) is again a sequence of
objects of X. A morphism between two sequences x and y of the same
length n consists of a braid on n-strings, whose strings are labelled by
arrows in X. More precisely, such a morphism consists of β ∈ Brn,
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together with a 2-cell

n
β //

x   A
AA

AA
AA

n

y~~}}
}}

}}
}

X

f +3

,

where β is the underlying permutation of β regarded as a functor between
discrete categories. The 2-functoriality of B and the unit work as with
M. The multiplication is described by concatenation of sequences, and
substitution of braids into braids in the evident way.

(6) [Kel74] [JS93] Denote by Symn the n-th symmetric group. We shall
denote by S the following 2-monad on CAT. An object of S(X) is again
a sequence of objects of X. A morphism between two sequences x and y
of the same length n consists of a permutation on n-strings whose strings
are labelled by arrows in X. More precisely, such a morphism consists of
β ∈ Symn, together with a 2-cell

n
β //

x   A
AA

AA
AA

n

y~~}}
}}

}}
}

X

f +3

,

where β is being regarded as a functor between discrete categories. The
2-functoriality of S and the unit work as with M. The multiplication is
described by concatenation of sequences, and substitution of permutations
into permutations in the evident way.

The important difference between 2-monads and ordinary monads on cate-
gories, is that there are various weaker notions of algebra in addition to the usual
(Eilenberg-Moore) algebras for a monad. This makes 2-monad theory a natural
choice of formalism when one wishes to consider coherently defined categorical
structures. In this work we shall consider pseudo algebras and pseudo morphisms
– where one replaces equality between composite arrows in the axiomatic definition
of the objects and arrows of T -Alg, the category of Eilenberg-Moore algebras for
T , by isomorphisms.

Definition 2.2. [Str72], [Pow89], [CHP03] Let (T, η, µ) be a 2-monad on a
2-category K. A pseudo T -algebra structure (a, α0, α) on an object A ∈ K consists
of a 1-cell a : TA→A and invertible 2-cells

T 2A
µA //

Ta

��

TA

a

��
TA a

// A

α +3

A
ηA //

1A ��@
@@

@@
@@

TA

a
}}||

||
||

||

A

α0 +3
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in K satisfying

T 2A
µA // TA

a

��6
66

66
66

T 3A //

µT A

@@�������

T 2a ��=
==

==
==

T 2A

AA�������

Ta
;;

;

��;
;;

A

T 2A
Ta

// TA

a

DD�������

Tα+3

α ?G����

T 2A
µA //

��;
;;

;;
;;

TA

a

��6
66

66
66

T 3A

µT A

@@�������

T 2a ��=
==

==
==

TA
a // A

T 2A
Ta

//

AA�������
TA

a

DD�������

����

α +3

αks

and

TA

1T A

��

""E
EE

EE
EE

E
1T A // TA

a

��

T 2A

µAyyyy

<<yyyy

Ta
yyy

||yyy
y

TA a
// A

=
Tα0+3

α +3

1a.

The triple (A,α0, α) is referred to as a pseudo T -algebra. When α0 is an identity
the pseudo algebra is said to be normal. When in addition α is an identity, we
refind the usual notion of T -algebra, and the algebra is said to be strict.

Definition 2.3. [Str72], [Pow89], [CHP03] Let (A,α0, α) and (A′, α′0, α
′)

be pseudo T -algebras. A strong T -morphism structure for a 1-cell f : A→A′ is an
invertible 2-cell

TA
a //

Tf

��

A

f

��
TA′

a′
// A′

f +3

satisfying

TA
a // A

f

��9
99

99
99

T 2A
Ta //

µA

??�������

T 2f ��>
>>

>>
>>

TA

a���

AA���

Tf
::

:

��:
::

A′

T 2A′
Ta′

// TA′
a′

BB�������

αks

Tf +3

f >F����

TA
a //

Tf
>>

>

��>
>>

A
f

��9
99

99
99

T 2A

µA

??�������

T 2f ��>
>>

>>
>>

TA′
a′ // A′

T 2A′
Ta′

//

µA′���

@@���

TA′
a′

BB�������

����

f +3

α′
ks

and
TA

a

&&MM
MMM

MM

��

A

ηA
88qqqqqqq

f

��

A

f

��

TA′

&&LLLLLL

A′

88rrrrrr
1A′

// A′

f
"*MMMM

α′
0

KS

qqqq

A
ηA //

1A   A
AA

AA
AA

TA

a
}}{{

{{
{{

{{

A

f

��
A′

α0 +3
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The pair (f, f) is called a strong T -morphism. We shall allow the notational abuse
of referring to the “strong T -morphism f”, omitting any reference to f . When f is
an identity, we refind the usual notion of T -algebra morphism, and the T -morphism
is said to be strict in this case.

Definition 2.4. [Str72], [Pow89], [CHP03] Let f and f ′ be strong T -
morphisms (a, α0, α) → (a′, α′0, α

′). A 2-cell ψ : f =⇒ f ′ is an algebra 2-cell when

TA

Tf

��
Tf ′

��

a // A

f ′

��
TA′

a′
// A′

Tψ+3 f ′ +3

TA

Tf

��

a // A

f

��
f ′

��
TA′

a′
// A′

f +3 ψ +3

With the evident compositions, one defines the 2-category Ps-T -Alg to consist
of pseudo T -algebras, strong T -morphisms and algebra 2-cells. The full sub-2-
category of Ps-T -Alg consisting of the normal pseudo algebras is denoted Ps0-T -Alg.
The locally full sub-2-category of Ps-T -Alg consisting of the strict algebras and
strict morphisms is denoted T -Algs.

Examples 2.5. (1) The 2-categories of strict and pseudo algebras coin-
cide for (2.1)(1), being just the usual category of algebras for T regarded
as a locally discrete 2-category.

(2) For any K, a strict algebra structure for 1K is vacuous. A normal pseudo
algebra structure is also vacuous. A pseudo algebra structure on X ∈ K
amounts to t : X→X together with an isomorphism t∼=1X .

(3) The 2-category of strict algebras for (2.1)(3) is just Cat(T -Alg).
(4) A strict M-algebra structure on a category X is a strict monoidal struc-

ture. A pseudo M-algebra structure on a category X is a monoidal struc-
ture described in an unbiased fashion. That is, one supplies an n-ary
tensor product for n ∈ N, and associated coherence isomorphisms. For a
normal pseudo M-algebra structure, the 1-ary tensor product of x ∈ X
is x, rather than just isomorphic to x. There are various monoidal coher-
ence results in the literature, for example in [Pow89], [Lac02], [Her00]
and [Her01], which are expressed in the language of pseudo algebras, and
so apply to many other situations. In all these results, the inclusion 2-
functor M-Algs→Ps-M-Alg is seen to have a left biadjoint for which the
unit of the biadjunction is an equivalence. In addition to these results,
one can also exhibit directly, a 2-equivalence between Ps0-M-Alg and the
2-category PsMon(CAT) consisting of monoidal categories defined in the
usual (biased) way, by giving a binary tensor product and a unit object.
Under this 2-equivalence, strong M-morphisms coincide with the tensor
functors of [JS93], and have been called strong monoidal functors else-
where.

(5) A strict B-algebra structure on a category X is a braided strict monoidal
structure, that is, a braided tensor category in the sense of [JS93] whose
underlying monoidal category is strict. A normal pseudo B-algebra struc-
ture on a category X is a braided monoidal structure on X described in an
unbiased fashion. As in the previous example there is a 2-equivalence be-
tween Ps0-B-Alg and the 2-category braided monoidal categories, braided
monoidal functors and monoidal natural transformations defined as in
[JS93].
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(6) In the same way, strict S algebras are symmetric strict monoidal cate-
gories, normal pseudo S-algebras are symmetric monoidal categories de-
fined in an unbiased fashion, and these are equivalent to the usual notion
of symmetric monoidal category.

3. Pseudo monoids

Having recalled a well-known “categorification” of monad algebra, we shall now
recall one for the notion of monoid in a monoidal category. For us, it suffices to
consider pseudo monoids within 2-categories with cartesian products in the CAT-
enriched sense, rather than internal to a more general monoidal 2-category. Later,
when we describe monoidal pseudo algebras and the operads they contain, this
specialisation to 2-categories with cartesian products becomes crucial. For the
remainder of this section, K is a 2-category with finite products. For the purposes
of this section monoidal categories, strong monoidal functors and monoidal natural
transformations correspond to the tensor categories, tensor functors and morphisms
of tensor functors of [JS93].

Expressed 2-categorically, a monoidal category consists of data (A, i,m, α, λ, ρ)
where A is a category, i and m are 1-cells

1
i // A A×Amoo

and (α, λ, ρ) are invertible natural transformations

A×A×A
1×m //

m×1

��

A×A

m

��
A×A m

// A

α +3

A
i×1 //

1
""E

EE
EE

EE
EE

A×A

m

��

A
1×ioo

1
||yy

yy
yy

yy
y

A

λks ρ +3

satisfying the usual pentagon and unit axioms [JS93]. For any other category X,
the category CAT(X,A) inherits a monoidal structure from A. Formally this is seen
by applying CAT(X,−) to the data and axioms (A, i,m, α, λ, ρ), and noting that
CAT(X,−) preserves products. Thus one obtains monoidal category structures
on CAT(X,A) 2-naturally in X. In fact by the 2-categorical yoneda lemma this
assignment of a natural family of monoidal category structures on CAT(X,A) from
each monoidal structure on A, is bijective. The advantage of the representable
definition is that it applies equally well in any 2-category with products.

Definition 3.1. [JS93] A pseudo monoid structure (i,m, α, λ, ρ) on A ∈ K
consists of 1-cells

1
i // A A×Amoo

and invertible 2-cells

A×A×A
1×m //

m×1

��

A×A

m

��
A×A m

// A

α +3

A
i×1 //

1
""E

EE
EE

EE
EE

A×A

m

��

A
1×ioo

1
||yy

yy
yy

yy
y

A

λks ρ +3
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in K such that for all X ∈ K, (K(X, i),K(X,m),K(X,α),K(X,λ),K(X, ρ)) is a
monoidal structure for K(X,A). A monoid in K is a pseudo-monoid for which the
two-cells in the above definition are identities.

Definition 3.2. [JS93] Let (A, i,m, α, λ, ρ) and (A′, i′,m′, α′, λ′, ρ′) be pseudo
monoids. A strong monoidal structure for a 1-cell f : A→A′ consists of invertible
2-cells

1
i //

1

��

A

f

��

A×Amoo

f×f
��

1
i′
// A′ A′×A′

m′
oo

φ0ks φ2 +3

in K such that for all X ∈ K, (K(X, f),K(X,φ0),K(X,φ2) provide the data for
a strong monoidal functor K(X,A) → K(X,A′). The strong monoidal morphism
(f, φ0, φ2) is said to be strict, when φ0 and φ2 are identities.

Definition 3.3. [JS93] Let (f, φ0, φ2) and (f ′, φ0
′, φ2

′) be strong monoidal
morphisms. A 2-cell ψ : f =⇒ f ′ is a monoidal 2-cell when for all X ∈ K, K(X,ψ)
is a monoidal natural tranformation.

With the evident compositions, one defines the 2-category PsMon(K) to consist
of pseudo monoids, strong monoidal morphisms and monoidal 2-cells. The locally
full sub-2-category of PsMon(K) consisting of strict monoids and strict monoid
morphisms is denoted as Mon(K). Note that the forgetful 2-functor

PsMon(K) // K
can easily be seen to create products.

Example 3.4. The 2-category PsMon(CAT) consists of monoidal categories,
strong monoidal functors, and monoidal natural transformations.

Examples 3.5. (1) Let E be a category with finite products, and let K
be E regarded as a locally discrete 2-category. Then a pseudo monoid is
just a monoid in E in the usual sense.

(2) Let K be PsMon(CAT). A pseudo monoid in K amounts to a braided
monoidal category. More precisely, [JS93] provide a 2-equivalence be-
tween PsMon(PsMon(CAT)) and the usual 2-category of braided monoidal
categories.

(3) Let K be PsMon(PsMon(CAT)). A pseudo monoid in K amounts to
a symmetric monoidal category. More precisely, [JS93] provide a 2-
equivalence between PsMon3(CAT) and the usual 2-category of symmet-
ric monoidal categories.

(4) Let K be PsMon3(CAT). A pseudo monoid in K also amounts to a
symmetric monoidal category. More precisely, [JS93] exhibit the forgetful
2-functor

PsMon4(CAT) // PsMon3(CAT)

as a 2-equivalence.

By the representable definition of the 2-categories PsMon(K) and the 2-functoriality
of PsMon, one immediately obtains the following “Eckmann Hilton” stabilisation
result.
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Proposition 3.6. Let K be a 2-category with finite products. Then the forgetful
2-functor

PsMonn+1(K) // PsMonn(K)

is a 2-equivalence when n ≥ 3.

4. Monoidal pseudo algebras

For this section, let T be a 2-monad on a 2-category K with finite products. It
is easily seen that both the forgetful 2-functors

Ps-T -Alg→K Ps0-T -Alg→K

create products, and so in particular, Ps0-T -Alg has finite products.

Definition 4.1. A monoidal pseudo T -algebra is a pseudo monoid in Ps0-T -Alg.

Unpacking this definition, one finds that a monoidal pseudo T -algebra consists
of

• an object A ∈ K.
• a normal pseudo T -algebra structure (a, α) on A.
• a pseudo monoid structure (i,m, β, λ, ρ) on A.
• an invertible 2-cell i which provides i with a strong T -morphism structure.
• an invertible 2-cell m which provides m with a strong T -morphism struc-

ture.
• the 2-cells β, λ and ρ satisfy the T -algebra 2-cell axiom.

We shall refer to this monoidal pseudo algebra by the ordered 8-tuple (A, a, i,m, α, β, λ, ρ).

Examples 4.2. (1) For T as in (2.1)(1), a monoidal pseudo algebra is a
monoid in T -Alg.

(2) For T = 1CAT a monoidal pseudo algebra is a monoidal category. More
generally, for T = 1K as in (2.1)(2), a monoidal pseudo algebra is a pseudo
monoid in K.

(3) For T = M as in (2.1)(4), a monoidal pseudo algebra amounts to a braided
monoidal category. More precisely we have a 2-equivalence

PsMon(Ps0-M-Alg) ' PsMon(PsMon(CAT))

from (2.5)(4) and the 2-functoriality of PsMon, and by (3.5)(2) PsMon(PsMon(CAT))
is 2-equivalent to the 2-category of braided monoidal categories. In this
formalism the braiding arises from m. In more detail, denote the object
map ofm bym(x, y) = x⊗0y, and the object map of a by a(x0, ..., xn−1) =
x0 ⊗1 ...⊗1 xn−1. Then m is an invertible 2-cell

M(A×A) //

M(m)

��

M(A)×M(A)
a×a // A×A

m

��
M(A)

a
// A

m +3
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whereM(A×A)→M(A)×M(A) is the canonical comparison. So the com-
ponent of m at ((x0, y0), ..., (xn−1, yn−1)) is an isomorphism

(x0⊗0y0)⊗1...⊗1(xn−1⊗0yn−1)

��
(x0⊗1...⊗1xn−1)⊗0(y0⊗1...⊗1yn−1)

Writing I0 for the unit for ⊗0, the components of i are isomorphisms

I0⊗1...⊗1I0︸ ︷︷ ︸
n

→I0

which in the case n = 0, gives an isomorphism I1∼=I0, where I1 is the unit
for ⊗1. Furthermore x⊗1y∼=x⊗0y is obtained as:

x⊗1y ∼= (x⊗0I0)⊗1 (I0⊗0y) ∼= (x⊗1I0)⊗0 (I0⊗1y)
∼= (x⊗1I1)⊗0 (I1⊗1y) ∼= x⊗0y

,

and a braiding in the usual sense is obtained as:

x⊗0y ∼= x⊗1y ∼= (I0⊗0x)⊗1 (y⊗0I0)
∼= (I0⊗1y)⊗0 (x⊗1I0) ∼= (I1⊗1y)⊗0 (x⊗1I1)
∼= y⊗0x

.

These isomorphisms encode the Eckmann-Hilton argument (see [Mac71],
pg 45, exercise 5).

(4) For T = B as in (2.1)(5), a monoidal pseudo algebra amounts to a
symmetric monoidal category. More precisely we have a 2-equivalence
PsMon(Ps0-B-Alg) ' PsMon3(CAT) from (2.5)(5), (3.5)(5) and the 2-
functoriality of PsMon. By (3.5)(3), PsMon3(CAT) is 2-equivalent to the
2-category of symmetric monoidal categories. The more explicit analysis
here only differs from the previous example in that the action a already
carries the information of a braiding for ⊗1. The naturality of m ensures
that the braiding encoded by it coincides with that described by a, and
forces it to be a symmetry.

(5) For T = S as in (2.1)(5), a monoidal pseudo algebra amounts to a sym-
metric monoidal category. Arguing as in the previous examples we have
a 2-equivalence PsMon(Ps0-B-Alg) ' PsMon4(CAT), and one between
PsMon4(CAT) and the usual 2-category of symmetric monoidal cate-
gories. The more explicit analysis here only differs from the previous ex-
ample in that the action a already carries the information of a symmetry,
and so m encodes no new information.

Further examples relevant to higher dimensional algebra will be considered in
section(7).

We shall now unpack the pseudo monoid part of a monoidal pseudo alge-
bra a little more to facilitate the general operad definition. To this end, let
(A, a, i,m, α, β, λ, ρ) be a monoidal pseudo T -algebra. First, we note that the unit
object i : X→A of the monoidal category K(X,A) is the composite

X
! // 1

i // A
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in K, where ! here denotes the unique map into the terminal object. Moreover,
given objects x and y of K(X,A), their tensor product x⊗y is the composite

X
(x,y) // A2 m // A

in K. Note that if z : Z→X, then (x⊗y)z = xz⊗yz by the naturality of ⊗. Similarly
one can express the rest of the pseudo monoid data (β, λ, ρ) representably.

One can write i : aT (i)→i for the 2-cell

T1
! //

T (i)

��

1

i

��
T (A)

a
// A

i +3

which provides i’s strong T -morphism structure. As for m, given objects x and y
of K(X,A), we shall write

aT (x⊗y)
mx,y // aT (x)⊗aT (y)

for the composite

T (X)
T (x,y) // T (A×A) π //

T (m)

��

T (A)×T (A)
a×a // A×A

m

��
T (A)

a
// A

m +3

where π is the canonical comparison, and m is m’s strong T -morphism structure.
When the context is clear we shall drop the subscripts and write

m : aT (x⊗y)→aT (x)⊗aT (y).

In light of this notation, the strong T -morphism axioms for m, and the T -algebra
2-cell axioms for β, λ and ρ, can be restated as follows.

Proposition 4.3. (1) ∀x, y ∈ K(X,A),

aT (a)T 2(x⊗y)
αT 2(x⊗y) //

aT (m)

��

aT (x⊗y)µTA

mµT A

��

aT (aT (x)⊗aT (y))

m

��
aT (a)T 2(x)⊗aT (a)T 2(y)

αT 2(x)⊗αT 2(y)

// aT (x)µTA⊗aT (y)µTA

commutes in K(X,A).
(2) ∀x, y ∈ K(X,A), mx,yηX = 1x⊗y.
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(3) ∀x, y, z ∈ K(X,A),

aT (x⊗(y⊗z))
aT (β) //

m

��

aT ((x⊗y)⊗z)

m

��
aT (x)⊗aT (y⊗z)

id⊗m
��

aT (x⊗y)⊗aT (z)

m

��
aT (x)⊗(aT (y)⊗aT (z))

β
// (aT (x)⊗aT (y))⊗aT (z)

commutes in K(X,A).
(4) ∀x ∈ K(X,A),

aT (i⊗x)

aT (λ)

��

m // aT (i)⊗aT (x)

i⊗id

��
aT (x) i⊗aT (x)

λ
oo

aT (x⊗i)

aT (ρ)

��

m // aT (x)⊗aT (i)

id⊗i
��

aT (x) aT (x)⊗i
ρ

oo

commute in K(X,A).

When writing diagrams such as those in (4.3), notice that there are situations
when objects can be expressed in more than one way. For instance in (4.3)(1) we
have aµAT 2(x⊗y) = aT (x⊗y)µTA by the naturality of µ, although in that diagram
we have only recorded aT (x⊗y)µTA. In similar situations below, we shall just
choose one description of a given object without further comment when there is
little risk of confusion.

5. Operads

With the language of monoidal pseudo algebras at our disposal, we are now
able to present our general operad definition.

Definition 5.1. Let (T, η, µ) be a 2-monad on a 2-category K with finite
products, and let (A, a, i,m, α, β, λ, ρ) be a monoidal pseudo T -algebra. A T -operad
(p, ι, σ) in A consists of a 1-cell p : T (1)→A, together with 2-cells ι and σ

1
η1 //

i ��?
??

??
??

? T1

p
~~}}

}}
}}

}}

A

ι +3

T 21

pT (!)⊗aT (p) !!C
CC

CC
CC

C
µ1 // T1

p
~~}}

}}
}}

}}

A

σ +3

such that

i⊗p ι!⊗id //

λ
%%LLLLLLLLLLL pT (!)ηT1⊗p

σηT1

��
p

p⊗aT (i)

id⊗i
��

id⊗aT (ι)// p⊗aT (p)T (η1)

σT (η1)

��
p⊗i

ρ
// p
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commute in K(T1, A) and

pT (!)⊗aT (pT (!)⊗aT (p))
id⊗m //

id⊗aT (σ)

��

pT (!)⊗ (aT (p)T 2(!)⊗aT (a)T 2(p))

β

��
pT (!)⊗aT (p)T (µ1)

σT (µ1)

��

(pT (!)⊗aT (p)T 2(!))⊗aT (a)T 2(p)

σT 2(!)⊗αT 2(p)

��
pµ1T (µ1) pT (!)µT1⊗aT (p)µT1σµT1

oo

commutes in K(T 31, A).

Definition 5.2. Let (T, η, µ) be a 2-monad on a 2-category K with finite prod-
ucts, and let (A, a, i,m, α, β, λ, ρ) be a monoidal pseudo T -algebra. A morphism
(p, ι, σ)→(p′, ι′, σ′) of T -operads in A consists of a 2-cell φ : p =⇒ p′ such that

i
ι //

ι′   A
AA

AA
AA

A pη1

φη1
��

p′η1

pT (!)⊗aT (p) σ //

φT (!)⊗aT (φ)

��

pµ1

φµ1

��
p′T (!)⊗aT (p′)

σ′
// p′µ1

commute K(1, A) and K(T 21, A) respectively.

With the evident composition, one obtains the category Op(T,A) of T -operads
in the monoidal pseudo T -algebra A, and a forgetful functor Op(T,A)→K(T1, A).

Definition 5.3. Let (p, ι, σ) be a T -operad in A. A p-algebra (x, x) consists
of a one-cell x : 1→A and a 2-cell

T1
! //

p⊗aT (x)   A
AA

AA
AA

A 1

x
����

��
��

�

A

x +3

such that

i⊗x ι⊗id //

λ !!C
CC

CC
CC

C pη1⊗x

xη1{{xxx
xx

xx
xx

x

commutes in K(1, A) and

pT (!)⊗aT (p⊗aT (x))
id⊗m //

id⊗aT (x)

��

pT (!)⊗ (aT (p)⊗aT (a)T 2(x))

β

��
pT (!)⊗aT (x)T (!)

xT (!)

��

(pT (!)⊗aT (p))⊗aT (a)T 2(x)

σ⊗αT 2(x)

��
x! pµ1⊗aT (x)µ1

xµ1

oo

commutes in K(T 21, A).
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Definition 5.4. Let (p, ι, σ) be a T -operad in A. A p-algebra morphism

f : (x, x)→(y, y)

consists of f : x→y in K(1, A) such that

p⊗aT (x) x //

id⊗aT (f)

��

x!

f !

��
p⊗aT (y)

y
// y!

commutes in K(T1, A).

With the evident composition, one obtains the category p-Alg of p-algebras and
a forgetful functor p-Alg→K(1, A). We shall now see how the well known operad
notions are captured by these general definitions.

Examples 5.5. (1) For T = 1CAT, a T -operad (p, ι, σ) in A is a monoid
M in the monoidal category A. The underlying object of M is picked
out by p : 1→A, and the unit and multiplication are provided by ι and σ
respectively. An object of p-Alg is an object of A acted on by M .

(2) For T = M, a T -operad (p, ι, σ) in A is a non-symmetric operad in the
braided monoidal category A. In more detail, first recall that M(1) = N
so p : M(1)→A is a sequence of objects (pn : n ∈ N) of A. The unit
ι amounts to a map i→p1 in A. As for the substitution, notice that
M2(1) is a discrete category (ie a set), and an element of M2(1) a finite
sequence (n1, ..., nk) of natural numbers, thus σ amounts to a morphism
in A for each such sequence. The map µ1 takes (n1, ..., nk) to its sum
n =

∑k
j=0 ni, and so pµ1 : M2(1)→A takes (n1, ..., nk) to pn. The map

M(!) : M2(1)→M takes (n1, ..., nk) to k, and so pM(!) takes (n1, ..., nk)
to pk. The map M(p) : M2(1)→M(A) takes (n1, ..., nk) to the sequence
of objects (pn1 , ..., pnk

) of A. Recall that the map a : M(A)→A takes a
sequence of objects (x1, ..., xk) of A to their k-ary tensor product x1⊗ ...⊗
xk. Thus the map aM(p) sends (n1, ..., nk) to pn1 ⊗ ... ⊗ pnk

. Thus the
map pM(!)⊗aM(p) : M2(1)→A sends (n1, ..., nk) to pk⊗(pn1⊗ ...⊗pnk

).
Therefore the component of σ corresponding to (n1, ..., nk) is a map

pk ⊗ (pn1 ⊗ ...⊗ pnk
) // pn

in A. The axioms express the usual unit and associativity laws for substi-
tution. Notice how the braiding m is necessary to express the associativity
of the substitution σ. The category p-Alg is the usual category of algebras
for the operad.

(3) For T = B, a T -operad (p, ι, σ) in A is a braided operad in the symmet-
ric monoidal category A. This example differs from the previous one in
two respects. The first is that the functoriality of p : B(1)→A amounts
to equipping each pn with an action of Brn, the n-th braid group. The
second is that the naturality of σ amounts to the substitution being equi-
variant with respect to these actions. Similarly, for a p-algebra (x, x), the
naturality of x encodes its equivariance as an action on x.



OPERADS WITHIN MONOIDAL PSEUDO ALGEBRAS 17

(4) In the same way, for T = S, a T -operad (p, ι, σ) in A is a symmetric
operad in the symmetric monoidal category A, with the functorialty of p
encoding the symmetric group actions on the pn, and the naturality of σ
encoding the equivariance.

6. Higher operads

In order to understand the motivating examples of this paper, it is necessary
to review some of the combinatorial aspects of the globular approach to higher
dimensional algebra. For a fuller discussion, see [Bat98], [Web04], [Web01], and
[Lei03]. Define the category G to have natural numbers as objects, and a generating
subgraph

0
σ0 //

τ0
// 1

σ1 //

τ1
// 2

σ2 //

τ2
// 3

σ3 //

τ3
// . . .

subject to the “cosource/cotarget” equations σn+1σn = τn+1σn and τn+1τn =
σn+1τn, for every n ∈ N. The objects of the category [Gop,Set], are called globular
sets. Thus, a globular set Z consists of a diagram of sets and functions

Z0 Z1

s0oo

t0
oo Z2

s1oo

t1
oo Z3

s2oo

t2
oo . . .

s3oo

t3
oo

so that snsn+1 = sntn+1 and tntn+1 = tnsn+1 for every n ∈ N. The elements of Zn
are called the n-cells of Z, and the functions sn and tn are called source and target
functions. Define Z to be of dimension n when there are no m-cells for m > n.
All constructions that we consider below, apply equally well to the category of n-
globular sets, where G is replaced by the full subcategory G(n) consisting of the
natural numbers ≤ n.

Let Z be a globular set. Recall from [Str91] the solid triangle order J on
the elements (of all dimensions) of Z. Define first the relation x ≺ y for x ∈ Zn
iff x = sn(y) or tn−1(x) = y. Then take J to be the reflexive-transitive closure of
≺. Write Sol(Z) for the preordered set so obtained. Observe that Sol is the object
map of a functor

[Gop,Set] Sol //PreOrd

where PreOrd is the category of preordered sets and order-preserving functions.

Definition 6.1. A globular cardinal is a globular set Z such that Sol(Z) is a
non-empty finite linear order.

Denote by Θ0 the full subcategory of [Gop,Set] consisting of the globular car-
dinals. Globular cardinals are the pasting schemes appropriate to the Batanin
definition of weak ω-category [Bat98], are analysed from the present point of view
in [Web01]. In particular we have

Proposition 6.2. (1) Globular cardinals are finite and connected as glob-
ular sets.

(2) All morphisms in Θ0 are monic.
(3) If X is a globular cardinal, then a retraction X→Y of globular sets is an

isomorphism.
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Write Trn for the set of isomorphism classes of globular cardinals of dimension
n. One of the most beautiful ideas in [Bat98], is the identification of Trn with
n-stage trees, where an n-stage tree T is defined to be a sequence

Tn→...→T0

of maps in ∆, the category of finite ordinals and monotone maps, where T0 = 1.
Central to the Batanin approach to higher dimensional algebra is the monad T0 on
[Gop,Set] whose algebras are strict ω-categories. The underlying functor of this
monad can be described as

T0(X)n =
∑

T∈Trn

[Gop,Set](T,X),

and the multiplication of this monad, which encodes the pasting of globular pasting
schemes, can be specified in terms of trees. This monad is cartesian, in the sense
that the underlying endofunctor preserves pullbacks, and the naturality squares
for η and µ are pullback squares. As mentioned in the introduction, one can then
regard T0 as a monad on [Gop,SET], and then apply Cat to obtain the cartesian
2-monad T on [Gop,CAT].

There is a 2-equivalence between Ps0-T -Alg and the 2-category MonGlob of
monoidal globular categories, monoidal globular functors and monoidal globular
natural transformations described in [Bat98]. One has 2-functors

MonGlob
F //

Ps0-T -Alg
G

oo

Given a monoidal globular category X, by making a choice of bracketting of iter-
ated expressions, one constructs the normal pseudo T -algebra F (X), with the same
underlying globular category. On the other hand, given a normal pseudo T -algebra
Y , one obtains the monoidal globular category G(Y ), with the same underlying
globular category, by considering only the nullary and binary operations, and as-
sociated coherence data. Using the coherence results of [Bat98], one can verify
directly that F and G form a 2-equivalence of 2-categories.

Pseudo monoids in MonGlob are particularly easy to describe: to give X ∈
[Gop,Cat] a structure of pseudo monoid in MonGlob, is the same as giving the
globular category

1 X0

soo

t
oo X1

soo

t
oo X2

soo

t
oo . . .

soo

t
oo

the structure of a monoidal globular category. Such a structure was called an
augmented monoidal globular category in [Bat98]. From the discussion of the
previous paragraph PsMon(Ps0-T -Alg) and the 2-category of augmented monoidal
globular categories are 2-equivalent.

All of the above definitions and results have n-truncated analogues for n ∈ N.
Namely define G≤n to be the full subcategory of G consisting of the k ∈ N such
that k ≤ n and the theory develops analogously. So the category of n-globular sets
is [G≤n

op,Set], and T0,≤n and T≤n are the obvious n-truncated analogues of T0

and T . We recall some of the main examples from [Bat98].

Examples 6.3. (1) There is a 2-functor

Span : CAT → [Gop,CAT]
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for which Span(E)n = [(G/n)op, E ]. When E has pullbacks, there is a
canonical monoidal globular structure on Span(E), and when in addition
E has products, this structure is augmented, with the additional (pseudo
monoid) structure being given by pointwise cartesian product in the cat-
egories [(G/n)op, E ].

(2) A monoidal structure on a category V amounts to a monoidal 1-globular
structure on

1 V
oo
oo .

(3) A braided monoidal structure on a category V amounts to a monoidal
2-globular structure on

1 1
oo
oo V

oo
oo .

(4) A symmetric monoidal structure on a category V amounts to a monoidal
n-globular structure on

1 ...oo
oo 1

oo
oo V

oo
oo

where n≥3.

The Span construction was analyzed further in [Str00]. In particular, for any
small category C in place of G, there is a 2-adjunction

CAT

SpanC

44
[Cop,CAT]

EL
uu

⊥

where SpanC(E)(C) = [(C/C)op, E ], and EL(X) is the following category:
• objects are pairs (C, x) where C ∈ C and x ∈ X(C).
• morphisms (C, x) → (D, y) are pairs (f, α) where f : D→C in C, and
α : X(f)(x)→y in X(D).

• compositions and identities are inherited in the obvious way from C and
the categories X(C).

When X is discrete, that is, as a functor factors through SET, then EL(X) =
el(X)op, the dual of the usual category of elements of X. If moreover, X is small,
that is, factors through Set, and E = Set, then we have

[Cop,CAT](X,SpanC(Set)) ∼= CAT(EL(X),Set)
= CAT(el(X)op,Set)
' [Cop,Set]/X

this last step being a well known equivalence of categories, pseudo natural in X. Let
(M,η, µ) be a cartesian monad on [Cop,Set], and recall the category M -Coll from
[Kel92] and [Web04], which is the full subcategory of [[Cop,Set], [Cop,Set]]/M
consisting of the cartesian natural transformations. Recall also that M -Coll has a
strict monoidal structure:

• η : 1→M is the unit.
• φ⊗ ψ is the composite

ST
φψ // MM

µ // M ,
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and that evaluation at 1 provides an equivalence of categories [Cop,Set]/M(1) '
M -Coll. That is, given a cartesian monad (M,η, µ) on [Cop,Set], we have

[Cop,CAT](M(1),SpanC(Set)) 'M -Coll

We now present the higher operads of [Bat98].

Examples 6.4. (1) A T -operad (p, ι, σ) in A amounts to a higher operad
in an augmented monoidal globular category A in the sense of [Bat98],
subject to one caveat. That is, the above definition is in fact more general
than that presented in [Bat98]. The difference is that in [Bat98], further
hypotheses on A are required, namely, that A has globular coproducts
which are compatible with the monoidal pseudo T -algebra structure of A
(see [Bat98] for further elaboration). In [Web], these hypotheses are seen
as another instance of a general notion of distributive monoidal pseudo
algebra. These further hypotheses induce a monoidal structure on the
category [Gop,CAT](T (1), A) ([Bat98] Theorem 6.1) and operads were
defined by Batanin to be monoids in this monoidal category. It can be
verified directly that the category of monoids in [Gop,CAT](T (1), A) is
isomorphic to Op(T,A).

(2) For the case A = Span(Set) of (1), we shall continue to regard T as a
2-monad on [Gop,CAT], and T0 as a monad on [Gop,Set]. Now T (1) =
T0(1), and the equivalence

[Gop,CAT](T0(1),Span(Set)) ' T0-Coll

is in fact a monoidal equivalence. Thus, a T -operad in Span(Set) amounts
to a cartesian monad morphism φ0 : R0→T0, and algebras for this operad
amount to algebras for the monad R0. We shall call such an operad φ0

a basic higher operad. There is a basic higher operad whose algebras are
weak ω-categories.

(3) By (6.3)(4) one can consider T≤n-operads within symmetric monoidal cat-
egories, where n≥3. Such examples are important for the applications of
higher operads to the study of loop spaces, see [Bat02] and [Bat03].

(4) Let φ0 : R0→T0 be a basic higher operad and consider the corresponding
cartesian 2-monad morphism φ : R→T obtained by shifting universes and
applying the 2-functor Cat (take category objects). The induced forgetful
2-functors T -Alg→R-Alg, Ps-T -Alg→Ps-R-Alg, and Ps0-T -Alg→Ps0-R-Alg
preserve products, and so in particular φ induces a forgetful 2-functor

PsMon(Ps0-T -Alg)→PsMon(Ps0-R-Alg)

ensuring a ready supply of examples of monoidal pseudo R-algebras, that
is, every monoidal pseudo T -algebra has an “underlying” monoidal pseudo
R-algebra structure. So in particular R-operads, for any basic higher op-
erad φ0, can be defined within any augmented monoidal globular cate-
gory, but live naturally within a “weaker” environment (monoidal pseudo
R-algebras).

7. Symmetric variants of higher operads

In this section, the symmetric analogues of Batanin’s higher operads are de-
scribed. In order to do so, new examples of 2-monads on [Gop,CAT] are described,
which blend together the 2-monad T , with an appropriate 2-monad C on CAT.
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For instance taking C to be B, the braided monoidal category 2-monad, the blend
alluded to here mixes the combinatorics of trees and pasting diagrams encapsulated
by T , with that of braids, and the operad notion corresponding to this new monad
is a braided analogue of higher operad. This construction hinges on two things:

(1) The underlying 2-functor of C preserves pullbacks. This is easily observed
directly for the examples of interest: M, B and S.

(2) An alternative description of ω-Cat, and more generally R-Alg0 for a
basic higher operad φ0 : R0→T0 (as in (6.4)(2)), as models for a finite
connected limit sketch.

This last point is not particularly surprising, at least for strict ω-categories. Already
from Ehresmann (see [Str86]) one knows that ω-Cat is the category of Set-valued
models for some sketch.

The concept of a sketch is originally due to Ehresmann and there are by now a
number of standard references on the subject: [MP89], [AR94] and [BW05]. We
shall now explain how the work of Clemens Berger [Ber02] exhibits the algebras
of a basic higher operad as the models of a finite connected limit sketch. However
as pointed out to the author by Steve Lack, it is possible also to give a more
general proof of this sketchability result than that presented here using the results
of [ABLR02].

Following [Ber02] we regard Θ0 as a Grothendieck site by taking covering
families to be jointly epimorphic families of morphisms. Denote by Shv(Θ0) the
category of sheaves on the site Θ0. Let φ0 : R0→T0 be a basic higher operad, and
denote by ΘR the full subcategory of R0-Alg whose objects are the R0-algebras
freely generated by the globular cardinals, and write iR : ΘR↪→R0-Alg for the
inclusion. Via the left adjoint [Gop,Set]→R0-Alg to the forgetful functor, one can
identify Θ0 as a subcategory of ΘR. Since R0 is a finitary monad on [Gop,Set],
R-Alg0 is locally finitely presentable and so cocomplete. Thus one obtains a “hom-
tensor” adjunction

[Θop
R ,Set]

LR

**
R0-Alg

NR

kk ⊥

where LR is the left kan extension of iR along the yoneda embedding, andNR(X)(T ) =
R0-Alg(iR(T ), X).

Definition 7.1. [Ber02] A ΘR-model is a presheaf F ∈ [Θop
R ,Set] whose

restriction to Θ0 is a sheaf. Denote by Mod(ΘR) the full subcategory of [Θop
R ,Set]

consisting of the ΘR-models.

Theorem 7.2. [Ber02] For any basic higher operad φ0 : R0→T0:
(1) NR is fully faithful.
(2) The adjunction LR a NR restricts to an equivalence Mod(ΘR) ' R0-Alg.

Note that in general, the fully faithfulness of NR is equivalent to the density of
iR.

Examples 7.3. (1) For the basic higher operad η : 1→T , (7.2)(2) gives
an equivalence [Gop,Set] ' Shv(Θ0). This equivalence can also be seen
as a basic consequence of the Giraud theorem from topos theory (see
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[MM91] pg 589), since Θ0, which contains the representables, generates
[Gop,Set].

(2) ΘT is equivalent to the Joyal’s category of disks from [Joy97] which was
denoted by Θ. This equivalence was first exhibited in [BS00], and proved
in [Ber02] and independently in [MZ01].

We recall the definition of limit sketch and models thereof.

Definition 7.4. A limit sketch is a 4-tuple D = (D, I, F, c) where D is a
category, I is a set, F is an I-indexed set of functors Fi : Ji→D, and c is an I
indexed set of cones ci : ∆(xi) =⇒ Fi (where ∆(xi) denotes the functor constant
at xi). We call the set F the diagrams, and the set c the distinguished cones for
the sketch D. Let E be a category with limits of functors out of Ji. The category
Mod(D, E), of E-valued models of D, is the full subcategory of [D, E ] consisting of
the functors D→E which take the cones ci to limiting cones. Denote by Mod(D)
the category Mod(D,Set).

Examples 7.5. (1) It is well known that limit sketches subsume
Grothendieck topologies, for, let D be a category, and J a Grothendieck
topology on D. Note that for each sieve α↪→D(−, x) ∈ J , one gets a
diagram el(α)→D as the discrete fibration corresponding to α, and a
cocone c for this diagram with components c(y,f) = αy(f). In this way one
gets a distinguished cone in Dop for each sieve in J , and so a limit sketch
whose underlying category is Dop. By definition, Set-valued models for
this sketch are sheaves for the Grothendieck topology J .

(2) Let φ0 : R0→T0 be a basic higher operad. By the above example, one has
a limit sketch whose underlying category is Θop

0 from the Grothendieck
topology described above (covering maps are jointly epimorphic families).
By composing with the inclusion Θ0→ΘR, one has a limit sketch whose
underlying category is Θop

R , and by definition, Mod(ΘR) is the category
of Set-valued models for this sketch. This sketch does not typically arise
from a Grothendieck topology.3 We shall abuse notation and refer to
this sketch as ΘR, even though the underlying category of this sketch is
Θop
R .

Definition 7.6. A limit sketch D = (D, I, F, c), is a connected limit sketch
when the categories Ji (that is, the domains of the Fi) are connected. D is a finite
limit sketch when the Ji have a finite initial subcategory.

For a finite connected limit sketch, the distinguished limiting cones may be
regarded as iterated pullbacks. More precisely, for such a sketch D, one can define
Mod(D, E) as long as E has pullbacks, and composition with a pullback preserving
functor E→E ′ induces Mod(D, E)→Mod(D, E ′). However, in the general context of
(7.5)(1), there is nothing forcing the diagram corresponding to an arbitrary sieve
α↪→D(−, x) ∈ J , to be finite or connected. We shall now show that for Θ0 with
the given Grothendieck topology, that this is indeed the case, and so, (7.5)(2) is a
finite connected limit sketch.

For a linearly ordered set X, and x ∈ X, we shall write x+ for the successor of
x, which exists as long as x is not the maximum element of X.

3For example, T0-Alg = ω-Cat is not a Grothendieck topos, in fact, one can show that it is
not even a regular category.
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Lemma 7.7. Let X be a globular cardinal. Regarding x ∈ Xn as an element of
Sol(X), and assuming x is not the maximum element, we have

x+ =
{

y if s(y) = x
t(x) otherwise

Proof. Suppose that x = s(y) and xJzJy. If z 6=x then we have x≺aJz,
and so a must be either y or t(x). In the first case, a = y, we have yJzJy and
so y = z. On the other hand, if a = t(x), note that t(x) = ts(y) = tt(y), and
t(x)JzJyJt(y)Jtt(y), so that y = z also. Thus if x = s(y), we have x+ = y. On
the other hand suppose that there is no y such that x = s(y). If there were no t(x),
then x∈X0, and X would be the globular set with one 0-cell and no other cells, in
which case x is the maximum. Now, suppose xJzJt(x) and x6=z. Then we have
x≺aJz and a is forced to be t(x). Thus, t(x)JzJt(x) and so z = t(x). Thus if
there is no y such that x = s(y), then x+ = t(x). �

Corollary 7.8. Let f : X→Y in Θ0. Then Sol(f)(x+) = Sol(f)(x)+ for all
non-maximal elements x.

Proof. By (7.7) the successor operation for Sol(X) is expressed in terms of
the sources and targets for X, which are preserved by f since it is a morphism of
globular sets. �

Given non-empty finite linear orders X, Y and Z, and successor-preserving
maps

X
f // Y Z

goo ,

the pullback in PreOrd of these maps is a finite linear order. It will simply be
formed as the intersection of the images of f and g. Recall that in any category E
with pullbacks and an initial object, arrows f and g as above are said to be disjoint
when their pullback is the initial object of E .

Proposition 7.9. Θ0 has pullbacks of pairs of maps which are non-disjoint in
[Gop,Set].

Proof. Let
P //

��

X

f

��
Y g

// Z

be a pullback square in [Gop,Set], f and g non-disjoint, and X, Y and Z globu-
lar cardinals. Applying Sol, which preserves pullbacks and initial objects, to this
pullback square, exhibits Sol(P ) as a pullback of non-disjoint successor-preserving
maps between finite linear orders. Thus, Sol(P ) is a non-empty finite linear order,
and so P is a globular cardinal. �

Proposition 7.10. The limit sketch of (7.5)(2) is a finite connected limit
sketch.

Proof. Let F be a jointly epimorphic family of maps in Θ0 with codomain
X, let α↪→Θ0(−, X) be the sieve generated by F . We must show that el(α) is
connected and has a finite final subcategory. First note that X is non-empty since
it is a globular cardinal, and so F and α are non-empty also. Let f and f ′ be a pair



24 MARK WEBER

of maps in F . Then there will be a finite sequence (f0, ..., fn) of maps from F , such
that all consecutive pairs of maps in the sequence (f, f0, ..., fn, f ′) are non-disjoint,
since X is finite and F is a jointly epimorphic family. By (7.9), one can take the
joint pullback of the maps (f, f0, ..., fn, f ′) in Θ0 to exhibit el(α) as connected.
Since all maps in F are monic by (6.2), and X has only finitely many subobjects,
el(α) contains only finitely many maps up to isomorphism in [Gop,Set]/X. That
is, el(α) is actually equivalent to a finite category. �

Corollary 7.11. Let φ0 : R0→T0 be a basic higher operad. Then

R-Alg ' Mod(ΘR,Cat)

Proof. By (7.10), we can apply the 2-functor Cat : PB→2CAT, which takes
category objects (see (2.1)(3)), to the equivalence Mod(ΘR) ' R0-Alg of (7.2)(2).
Clearly, Mod(ΘR,Cat) ∼= Cat(Mod(ΘR)). �

Any 2-monad (C, η, µ) on Cat may be regarded as a 2-monad (CG, ηG, µG) on
[Gop,Cat] by composition, that is, the components of ηG and µG for X ∈ [Gop,Cat]
are:

Gop X // Cat

1

��
C //

CC

@@Cat
η��

µ
KS ,

and we shall see that this 2-monad distributes with T whenever C preserves pull-
backs. First, we shall clarify what we mean by a distributive law between 2-monads,
since there are various notions that one could use.

Recall that a distributive law between monads S and T , is a natural transfor-
mation λ : TS→ST , satisfying some axioms, which enable one to define a monad
structure on the composite ST . This is done is such a way that algebra structures
for ST , amount to compatible S algebra and T algebra structures. In [Str72] it
was shown that the theory of monad distributive laws can be developed internal to
a 2-category. In particular, when the 2-category K in question has certain weighted
limits called Eilenberg-Moore objects, distributive laws λ : TS→ST between mon-
ads S and T on A ∈ K, correspond to liftings of the monad S to the Eilenberg-Moore
object AT (object of T -algebras). In more detail, recall that the Eilenberg Moore
object includes a “forgetful one-cell” u : AT→A. A lifting of f : A→A is an f
making

AT
f //

u

��

AT

u

��
A

f
// A
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commute. Given liftings f1 and f2 of f1 and f2, and a 2-cell φ : f1 =⇒ f2, a lifting
of φ from f1 to f2 is a 2-cell φ making

AT

f1
$$

f2

::

u

��

AT

u

��
A

f1

##

f2

;; A

φ��

φ��

commute. So to give a distributive law TS→ST , is to give a lifting in this sense, of
all the data of the monad (S, η, µ) on A, to a monad (S, η, µ) on AT . See [Str72]
and [LS02] for further elaboration. For us, the 2-category K is that of CAT-
enriched categories: monads in K are 2-monads, and the Eilenberg-Moore object
of T is the 2-category T -Algs of strict T -algebras, strict algebra morphisms, and
algebra 2-cells. When there is a distributive law TS→ST , in this sense between
2-monads S and T , we shall say that S distributes with T .

Theorem 7.12. Let (C, η, µ) be a 2-monad on Cat such that C preserves pull-
backs, and φ0 : R0→T0 be a basic higher operad. Then the 2-monad CG distributes
with R.

Proof. By the theory of distributive laws it suffices to exhibit a lifting of
(CG, ηG, µG) to R-Algs, and by (7.11) we have the equivalence

R-Algs ' Mod(ΘR,CAT)

Since C preserves pullbacks, the 2-monad on [Θop
R ,CAT] with components

Θop
R

X // CAT

1

��
C //

CC

??CAT
η��

µ
KS ,

restricts to Mod(ΘR,CAT), and is by definition a lifting of (CG, ηG, µG). �

Example 7.13. Let E be a category with finite limits, and φ0 : R0→T0 be
a basic higher operad. Then by (6.4)(4) and (6.3)(1), Span(E) has a monoidal
pseudo R-algebra structure, with the additional pseudo monoid structure being
given dimensionwise by pointwise cartesian product. Thus, this additional pseudo
monoid structure may be regarded as a compatible pseudo SG algebra structure. In
this way, Span(E) is canonically a pseudo SGR-algebra. As in (4.2)(4), the pseudo
monoid part of a monoidal pseudo SGR-algebra encodes no new information. Thus,
for any basic higher operad φ0 : R0→T0, and category E with finite limits, Span(E)
is canonically a monoidal pseudo SGR-algebra. Via the forgetful functors induced by
the obvious monad morphisms M→B→S, Span(E) may be regarded as a monoidal
pseudo algebra also for the monads MGR and BGR.
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By (7.12) we can consider MGT -operads, BGT -operads, and SGT -operads –
natural higher globular analogues of non-symmetric operads, braided operads and
symmetric operads respectively. For that matter, one may replace T by R, for an
arbitrary basic higher operad φ0 : R0→T0. Thus, any higher dimensional categor-
ical structure, which is describable by a basic higher operad, automatically comes
equipped with its own analogous notions of non-symmetric, braided, and symmetric
operad.
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[MP89] M. Makkai and R. Paré, Accessible categories, Contemp. Math., vol. 104, AMS, 1989.

[MZ01] M. Makkai and M. Zawadowski, Duality for simple ω-categories and disks, Theory and

applications of categories 8 (2001), 114–243.
[Pow89] A. J. Power, A general coherence result, J. Pure Appl. Algebra 57 (1989), 165–173.

[Str72] R. Street, The formal theory of monads, J. Pure Appl. Algebra 2 (1972), 149–168.

[Str74] , Elementary cosmoi, Lecture Notes in Math. 420 (1974), 134–180.
[Str80] , Cosmoi of internal categories, Trans. Amer. Math. Soc. 258 (1980), 271–318.

[Str86] , The algebra of oriented simplexes, J. Pure Appl. Algebra 43 (1986), 235–242.
[Str91] , Parity complexes, Cahiers Topologie Gom. Diffrentielle Catgoriques 32 (1991),

315–343.

[Str00] , The petit topos of globular sets, J. Pure Appl. Algebra 154 (2000), 299–315.
[SW78] R. Street and R.F.C. Walters, Yoneda structures on 2-categories, J.Algebra 50 (1978),

350–379.

[Tri] T. Trimble, The definition of a tetracategory, unpublished manuscript.
[Web] M. Weber, Operads within a monoidal pseudo algebra II, in preparation.

[Web01] , Symmetric operads for globular sets, Ph.D. thesis, Macquarie University, 2001.

[Web04] , Generic morphisms, parametric representations, and weakly cartesian monads,
Theory and applications of categories 13 (2004), 191–234.

Department of Mathematics and Statistics, University of Ottawa

E-mail address: Mark.Weber@science.uottawa.ca


