
In this talk a common generalisation of:

• a simplicial set is the nerve of a category

iff it satisfies the Segal condition.

• if T is a finitary monad on Set then there

is an equivalence of categories between

T -Alg and the category of product pre-

serving set valued functors from LT , the

Lawvere theory associated to T .

will be presented.
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For any functor

f : A→ B

satisfying certain size conditions, one can con-

sider it’s resolution which is the functor

B(f,1) : B → Â

defined by B(f,1)(b)(a) := B(fa, b).

If f is the inclusion of ∆ into Cat, then

B(f,1) associates to each category its nerve.

If f is the functor ∆→Top which sends [n]

to the topological n-simplex

{x ∈ Rn+1 : xi ≥ 0,
∑
i

xi = 1}

then B(f,1) associates to each space its sim-

plicial resolution.
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Resolutions are fundamental to category the-

ory because one has a natural tranformation

A
f

//

y

!!CCCCCCCCCCCCCCCCCCCC B

B(f,1)
}}{{{{{{{{{{{{{{{{{{{{

Â

χf
+3

whose components

(χfa′)a : A(a, a′)→ B(fa, fa′)

are the arrow mappings of f . The technical

aspects of this work were handled by pay-

ing attention to the important properties en-

joyed by the χf ’s which have been used to

provide 2-categorical axiomatisations of cat-

egory theory.
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Definition 1. A monad with arities (T,Θ)

consists of a monad (T, η, µ) on a cocomplete

category A together with a fully faithful and

dense functor

i0 : Θ0 → A

such that Θ0 is small, and the functor A(i0, T )

preserves the density left extension of i0.

A basic example: take A to be the cate-

gory of directed graphs, and T the category

monad. Then Θ0 can be taken to consist of

the non-empty ordinals.

Another basic example: any finitary monad

on Set has arities given by the finite sets.
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Each functor can be factored uniquely as an

identity on objects followed by a fully faithful.

Applying this one defines the category ΘT by

giving

Θ0
i0 //

j ##FFFFFFFF A F //T -Alg

ΘT
i

99ssssssssss
=

where j is an identity on objects functor and

i is fully faithful.

Definition 2. The nerve functor for (T,Θ0)

is

T -Alg(i,1) : T -Alg→ Θ̂T

so for a T -algebra X we call T -Alg(i,X) ∈ Θ̂T

the nerve of X. For Z ∈ Θ̂T satisfies the

Segal condition when resjZ is in the image

of

A(i0,1) : A→Θ̂0.
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In the case where A is a presheaf category

Ĉ and Θ0 includes the representables, the

Segal condition doesn’t look so horribly ab-

stract. For p ∈ Θ0, write p for the canonical

colimit cocone which expresses p as a colimit

of representables. Then we have

Proposition 3. Z ∈ Θ̂T satisfies the Segal

condition iff it sends the cocone jp to a limit

cone.
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Theorem 4. Let (T,Θ0) be a monad with

arities on A.

1. The nerve functor is fully faithful.

2. Z ∈ Θ̂T is the nerve of a T -algebra iff it

satisfies the Segal condition.
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The first step of the proof is to provide iso-

morphisms

T -Alg
T-Alg(i,1)

//

U

��

Θ̂T

resj
��

A
A(i0,1)

// Θ̂0

κ +3

A
A(i0,1)

//

F

��

Θ̂0

lanj
��

T -Alg
T-Alg(i,1)

// Θ̂T

ψ
+3

which in each case exhibit the right most ver-

tical arrow as a left kan extension. It’s obvi-

ous that there’s an isomorphism κ because

A(i0, U) ∼= T -Alg(Fi0,1) = T -Alg(ij,1)

by the adjunction F a U .
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We can define κ as the unique 2-cell such

that the composite

A F //

1
MMMMMMMMMMMMM

&&MMMMMMMMMMMMM

T -Alg

U

��

T-Alg(i,1)
// Θ̂T

resj
��

Θ0

i0

OO

i0
//

y

;;
A

A(i0,1)
// Θ̂0

χi0
KS� � � �

� � � �

id
KS

η
+3 κ +3

is equal to

Θ0
j

//

y

��

ΘT

y

��

i //T -Alg

T-Alg(i,1)
{{wwwwwwwwwwwwwwwwwwwwwwwwww

Θ̂0 Θ̂Tresj
oo

χyj
+3

χi
+3
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Writing T := resjlanj, by pasting κ and ψ one

obtains an isomorphism

A
A(i0,1)

//

T

��

Θ̂0

T

��

A
A(i0,1)

// Θ̂0

∼=

compatible with the monad structures on T

and T . From such a nice situation one ob-

tains

Lemma 5. There is a bijection between T -

algebra structures on a ∈ A, and T algebra

structures on A(i0, a).

This expresses the sense in which any monad

with arities can be “completed” to a cocon-

tinuous monad on a presheaf category.
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Any parametric right adjoint monad T on a

presheaf category Ĉ gives an example.

A functor F : A→B is a parametric right

adjoint when for each a the induced functor

A/a→ B/Fa

is a right adjoint. When A has a terminal

object 1, it’s enough to ask this in the case

a=1.

In the case where B=Set, such functors are

just the coproducts of representables.

If A and B are presheaf categories one has

that for F with rank, p.r.a is equivalent to

preserving connected limits.

A monad is said to be p.r.a when its un-

derlying endofunctor is p.r.a and its unit and

multiplication are cartesian.
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To give T arities, one should recall another

characterisation of p.r.a functors in terms of

generic morphisms.

A morphism

g : B → TA

is T -generic when for any α, β, and γ making

the outside of

B α //

f

��

TX

Tγ

��

TA Tβ
//

Tδ

99

TZ

commute, there is a unique δ for which γ◦δ =

β and T (δ) ◦ f = α.

Then the endofunctor T is p.r.a iff each f :

B→TA factors as

B
g

//TC Th //TA

where g is generic.
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Now define p ∈ Ĉ to be an object of Θ0 when

there exists a generic morphism

g : C(−, C)→ Tp

When T is the “monoid monad” on Set, Θ0

consists of the finite sets.

When T is the “category monad” on the cat-

egory of directed graphs, Θ0 consists of the

finite non-empty ordinals.

When T is the “strict ω category monad”

on the category of globular sets, Θ0 consists

of the globular pasting schemes.

Proposition 6. (T,Θ0) is a monad with ari-

ties.
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Denote by M the category with:

• objects: there is an object 0, and for n ∈
N an object (n,1).

• arrows: for each n ∈ N there is an arrow
τn : 0→(n,1), and for 1≤i≤n there are
arrows σn,i : 0→(n,1).

An X ∈ M̂ is called a multigraph. The ele-
ments of X(0) are the objects of X and an
element of f ∈ X(n,1) is said to be a multi-
edge of input arity n and is depicted as

f : (a1, ..., an)→ b

One can describe a p.r.a monad T on M̂
whose algebras are symmetric multicategories.
The category Θ0 has isomorphism classes in
bijection with planar trees, the objects of Θ̂T

are called dendroidal sets and our theorem in
this case is the characterisation of “nerves of
operads” due to Moerdijk and Weiss.
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