In this talk a common generalisation of:

- a simplicial set is the nerve of a category iff it satisfies the Segal condition.
- if T is a finitary monad on Set then there is an equivalence of categories between T-Alg and the category of product preserving set valued functors from \mathcal{L}_T , the Lawvere theory associated to T.

will be presented.

For any functor

$$f: A \to B$$

satisfying certain size conditions, one can consider it's **resolution** which is the functor

$$B(f, 1) : B \to \widehat{A}$$

defined by B(f,1)(b)(a) := B(fa,b).

If f is the inclusion of Δ into Cat, then B(f, 1) associates to each category its nerve.

If f is the functor $\Delta \rightarrow \text{Top}$ which sends [n] to the topological *n*-simplex

$${x \in \mathbb{R}^{n+1} : x_i \ge 0, \sum_i x_i = 1}$$

then B(f, 1) associates to each space its simplicial resolution.

Resolutions are fundamental to category theory because one has a natural tranformation

whose components

$$(\chi^f_{a'})_a : A(a,a') \to B(fa,fa')$$

are the arrow mappings of f. The technical aspects of this work were handled by paying attention to the important properties enjoyed by the χ^{f} 's which have been used to provide 2-categorical axiomatisations of category theory.

Definition 1. A monad with arities (T, Θ) consists of a monad (T, η, μ) on a cocomplete category A together with a fully faithful and dense functor

 $i_0: \Theta_0 \to A$

such that Θ_0 is small, and the functor $A(i_0, T)$ preserves the density left extension of i_0 .

A basic example: take A to be the category of directed graphs, and T the category monad. Then Θ_0 can be taken to consist of the non-empty ordinals.

Another basic example: any finitary monad on Set has arities given by the finite sets. Each functor can be factored uniquely as an identity on objects followed by a fully faithful. Applying this one defines the category Θ_T by giving

where j is an identity on objects functor and i is fully faithful.

Definition 2. *The* **nerve functor** *for* (T, Θ_0) *is*

$$T-\operatorname{Alg}(i,1): T-\operatorname{Alg} \to \widehat{\Theta}_T$$

so for a *T*-algebra *X* we call *T*-Alg $(i, X) \in \widehat{\Theta}_T$ the **nerve of** *X*. For $Z \in \widehat{\Theta}_T$ satisfies the **Segal condition** when res_j*Z* is in the image of

$$A(i_0,1): A \rightarrow \widehat{\Theta}_0.$$

In the case where A is a presheaf category $\widehat{\mathbb{C}}$ and Θ_0 includes the representables, the Segal condition doesn't look so horribly abstract. For $p \in \Theta_0$, write \overline{p} for the canonical colimit cocone which expresses p as a colimit of representables. Then we have

Proposition 3. $Z \in \widehat{\Theta}_T$ satisfies the Segal condition iff it sends the cocone $j\overline{p}$ to a limit cone.

Theorem 4. Let (T, Θ_0) be a monad with arities on A.

- 1. The nerve functor is fully faithful.
- 2. $Z \in \widehat{\Theta}_T$ is the nerve of a *T*-algebra iff it satisfies the Segal condition.

The first step of the proof is to provide isomorphisms

which in each case exhibit the right most vertical arrow as a left kan extension. It's obvious that there's an isomorphism κ because

 $A(i_0, U) \cong T \text{-} \mathsf{Alg}(Fi_0, 1) = T \text{-} \mathsf{Alg}(ij, 1)$

by the adjunction $F \dashv U$.

We can define κ as the unique 2-cell such that the composite

is equal to

Writing $\overline{T} := \operatorname{res}_j \operatorname{lan}_j$, by pasting κ and ψ one obtains an isomorphism

compatible with the monad structures on T and $\overline{T}.$ From such a nice situation one obtains

Lemma 5. There is a bijection between Talgebra structures on $a \in A$, and \overline{T} algebra structures on $A(i_0, a)$.

This expresses the sense in which any monad with arities can be "completed" to a cocontinuous monad on a presheaf category. Any parametric right adjoint monad T on a presheaf category $\widehat{\mathbb{C}}$ gives an example.

A functor $F : A \rightarrow B$ is a **parametric right** adjoint when for each a the induced functor

$$A/a \rightarrow B/Fa$$

is a right adjoint. When A has a terminal object 1, it's enough to ask this in the case a=1.

In the case where B=Set, such functors are just the coproducts of representables.

If A and B are presheaf categories one has that for F with rank, p.r.a is equivalent to preserving connected limits.

A *monad* is said to be p.r.a when its underlying endofunctor is p.r.a and its unit and multiplication are cartesian. To give T arities, one should recall another characterisation of p.r.a functors in terms of generic morphisms.

A morphism

$$g: B \to TA$$

is $T\text{-}\mathbf{generic}$ when for any $\alpha,\ \beta,\ \mathrm{and}\ \gamma$ making the outside of

commute, there is a unique δ for which $\gamma \circ \delta = \beta$ and $T(\delta) \circ f = \alpha$.

Then the endofunctor T is p.r.a iff each f: $B \rightarrow TA$ factors as

$$B \xrightarrow{g} TC \xrightarrow{Th} TA$$

where g is generic.

Now define $p \in \widehat{\mathbb{C}}$ to be an object of Θ_0 when there exists a generic morphism

$$g: \mathbb{C}(-, C) \to Tp$$

When T is the "monoid monad" on Set, Θ_0 consists of the finite sets.

When T is the "category monad" on the category of directed graphs, Θ_0 consists of the finite non-empty ordinals.

When T is the "strict ω category monad" on the category of globular sets, Θ_0 consists of the globular pasting schemes.

Proposition 6. (T, Θ_0) is a monad with arities.

Denote by ${\mathbb M}$ the category with:

- objects: there is an object 0, and for $n \in \mathbb{N}$ an object (n, 1).
- arrows: for each $n \in \mathbb{N}$ there is an arrow $\tau_n : 0 \rightarrow (n, 1)$, and for $1 \leq i \leq n$ there are arrows $\sigma_{n,i} : 0 \rightarrow (n, 1)$.

An $X \in \widehat{\mathbb{M}}$ is called a *multigraph*. The elements of X(0) are the objects of X and an element of $f \in X(n, 1)$ is said to be a *multiedge* of *input arity* n and is depicted as

 $f:(a_1,...,a_n)\to b$

One can describe a p.r.a monad T on $\widehat{\mathbb{M}}$ whose algebras are symmetric multicategories. The category Θ_0 has isomorphism classes in bijection with planar trees, the objects of $\widehat{\Theta}_T$ are called *dendroidal sets* and our theorem in this case is the characterisation of "nerves of operads" due to Moerdijk and Weiss.