In this talk a common generalisation of:

e a simplicial set is the nerve of a category
iff it satisfies the Segal condition.

e if T"is a finitary monad on Set then there
IS an equivalence of categories between
T-Alg and the category of product pre-
serving set valued functors from L, the
Lawvere theory associated to T'.

will be presented.



For any functor
f:A— B

satisfying certain size conditions, one can con-
sider it's resolution which is the functor

B(f,1):B— A
defined by B(f,1)(b)(a) := B(fa,b).

If f is the inclusion of A into Cat, then
B(f,1) associates to each category its nerve.

If f is the functor A—Top which sends [n]
to the topological n-simplex

{z eR" Lz, > 0, z; =1}
)

then B(f,1) associates to each space its sim-
plicial resolution.



Resolutions are fundamental to category the-
ory because one has a natural tranformation

A / B
X/

Yy B(f,1)
A

whose components

(X! 4)a - A(a,d’) — B(fa, fa')

are the arrow mappings of f. The technical
aspects of this work were handled by pay-
ing attention to the important properties en-
joyed by the Xf’s which have been used to
provide 2-categorical axiomatisations of cat-
egory theory.



Definition 1. A monad with arities (7, 0)
consists of a monad (T,n,u) on a cocomplete
category A together with a fully faithful and
dense functor

0.9 — A

such that ©¢ is small, and the functor A(ig, T)
preserves the density left extension of 1.

A basic example: take A to be the cate-
gory of directed graphs, and T'" the category
monad. Then ©g can be taken to consist of
the non-empty ordinals.

Another basic example: any finitary monad
on Set has arities given by the finite sets.



Each functor can be factored uniquely as an
identity on objects followed by a fully faithful.
Applying this one defines the category ©1 by

giving

©0 - A-F-T-Alg

NS A

O
where j5 is an identity on objects functor and
¢ is fully faithful.

Definition 2. The nerve functor for (T,9)
IS
T-Alg(i, 1) : T-Alg — O

so for a T-algebra X we call T-Alg(i, X) € O
the nerve of X. For Z € @T satisfies the
Segal condition when res;Z is in the image
of

A(ig, 1) : A—By.



In the case where A is a presheaf category
C and ©gp includes the representables, the
Segal condition doesn’t look so horribly ab-
stract. For p € ©q, write p for the canonical
colimit cocone which expresses p as a colimit
of representables. Then we have

Proposition 3. 7 ¢ @T satisfies the Segal
condition iff it sends the cocone jp to a limit
cone.



Theorem 4. Let (T,©n) be a monad with
arities on A.

1. The nerve functor is fully faithful.

2. Z € ©r is the nerve of a T-algebra iff it
satisfies the Segal condition.



The first step of the proof is to provide iso-
morphisms

- ; o Alin.1 —
T—Alg T Alg(’l,,l) @T A (ZOa ) @O
o LN res; F ¥, lan;
A Gy o A9 1 A1y ©T

which in each case exhibit the right most ver-
tical arrow as a left kan extension. It's obvi-
ous that there's an isomorphism sk because

by the adjunction F HU.



We can define x as the unique 2-cell such
that the composite

LN res;

| o
Z°| lid 7
IS —

S0 Alio.1) 0
W

Yy

IS equal to




Writing T := res;lan;, by pasting x and 1 one
obtains an isomorphism

A A(ig,1) @O

112

T

A

A1) 20
compatible with the monad structures on T

and T. From such a nice situation one ob-
tains

Lemma 5. There is a bijection between T'-
algebra structures on a € A, and T algebra
structures on A(ig,a).

T his expresses the sense in which any monad
with arities can be “completed” to a cocon-
tinuous monad on a presheaf category.
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Any parametric right adjoint monad 71" on a
presheaf category C gives an example.

A functor F' : A—B is a parametric right
adjoint when for each a the induced functor

A/a — B/Fa

is a right adjoint. When A has a terminal
object 1, it's enough to ask this in the case

a=1.

In the case where B=Set, such functors are
just the coproducts of representables.

If A and B are presheaf categories one has
that for F with rank, p.r.a is equivalent to
preserving connected limits.

A monad is said to be p.r.a when its un-
derlying endofunctor is p.r.a and its unit and

multiplication are cartesian.
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To give T arities, one should recall another
characterisation of p.r.a functors in terms of
generic morphisms.

A morphism

g.B—-TA

is T'-generic when for any «, 3, and v making
the outside of

B— % —TX

TS |

/ T

TA

5 TZ

commute, there is a unique ¢ for which vod =
B and T(6) o f = a.

Then the endofunctor T is p.r.a iff each f
B—T A factors as

B-L-rcThpg

where g is generic.
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Now define p € C to be an object of ©p when
there exists a generic morphism

g . C(—,C) — Tp

When T is the “monoid monad” on Set, ©g
consists of the finite sets.

When T is the “category monad” on the cat-
egory of directed graphs, ©g consists of the
finite non-empty ordinals.

When T is the “strict w category monad”

on the category of globular sets, ©g consists
of the globular pasting schemes.

Proposition 6. (T,0©(q) is a monad with ari-
ties.
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Denote by M the category with:

e Objects: there is an object O, and for n &€
N an object (n,1).

e arrows: for each n € N there is an arrow
™ . 0—(n,1), and for 1<i<n there are
arrows oy, ; : 0—(n, 1).

An X € M is called a multigraph. The ele-
ments of X(0) are the objects of X and an
element of f € X(n,1) is said to be a multi-
edge of input arity n and is depicted as

f : (a].)'")a’n) — b

One can describe a p.r.a monad T on M
whose algebras are symmetric multicategories.
The category ©g has isomorphism classes in
bijection with planar trees, the objects of &
are called dendroidal sets and our theorem in
this case is the characterisation of “nerves of
operads” due to Moerdijk and Weiss.
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