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1. Introduction

These are notes corresponding to the talk I gave at the Villars operad conference
(March 6-9 2006).

The work that I tried to describe in this talk is aimed at simplifying and
extending the operadic notions of [Bat98], [Bat02] and [Bat06] so that weak
higher dimensional monoidal categories may be described and illuminated by the
resulting theory. See [BD95] for some discussion on why one would want to consider
such categorical structures. Particularly in [Bat02] and [Bat06] one finds a key
point of contact between this area and the classical theory of loop spaces, and it is
the further development of this thread of research which was the subject of Clemens
Berger’s talk at this conference.

The technology that I use in my work comes from 2-dimensional category
theory. Papers that are fundamental background for my approach are [SW78],
[Str74], [Str80], [Str72] and [BKP89]. The first three could loosely be referred
to as 2-dimensional topos theory, and [Web07] develops some aspects of this theory
a little further with applications to higher category theory in mind. The papers
[Str72] and [BKP89] are concerned with monad theory.

2. Monoidal algebras for a 2-monad and a general operad notion

In this section the general notion of [Web05] is described.
We will illustrate our general operad notion by writing down the well-known

definition of “operad in a symmetric monoidal category V” in the style of the
abstract approach.

Let CAT be the 2-category of categories and let S be the 2-monad on CAT
whose strict algebras are symmetric strict monoidal categories. This is the basic
data we use for our description. In general one has a 2-category K with cartesian
products and a 2-monad S on K.

So in our example SX is the category whose objects are finite sequences of
objects from X, and arrows are permutations labelled by the arrows of X. In
particular S1 is a skeleton of the groupoid of finite sets. Regard V ∈ CAT. The act
of taking n-fold tensor products X1 ⊗ ...⊗Xn in V for all n can be bundled up as
a functor

a : SV → V
1
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and some natural isomorphisms that exhibit V as a pseudo S-algebra. On the other
hand specifying V’s monoidal structure in terms of a binary tensor product and a
unit amounts to maps

1
i // V V × Vmoo

and some natural isomorphisms that exhibit this data as a pseudo monoid. Note
that this pseudo monoid data lifts to the 2-category of pseudo S-algebras, thus V
has the structure of a “monoidal pseudo S-algebra”.

Now an operad in V consists of a functor p : S1→V, together with natural
transformations ι and σ

1
η1 //
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>>
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such that

i⊗p ι!⊗id //

λ
%%LLLLLLLLLLL pS(!)ηS1⊗p

σηS1

��
p

p⊗aS(i)

id⊗i
��

id⊗aS(ι)// p⊗aS(p)S(η1)

σS(η1)

��
p⊗i

ρ
// p

commute in CAT(S1,V) and

pS(!)⊗aS(pS(!)⊗aS(p))
id⊗m //

id⊗aS(σ)

��

pS(!)⊗ (aS(p)S2(!)⊗aS(a)S2(p))

β

��
pS(!)⊗aS(p)S(µ1)

σS(µ1)

��

(pS(!)⊗aS(p)S2(!))⊗aS(a)S2(p)

σS2(!)⊗αS2(p)

��
pµ1S(µ1) pS(!)µS1⊗aS(p)µS1σµS1

oo

commutes in CAT(S31,V).
In the evident way such an operad p acts on the hom-category CAT(1,V).
Examples involving CAT:

• S = 1CAT: monoidal pseudo algebras are monoidal categories; operads
are monoids.

• S = strict monoidal category monad; monoidal pseudo algebras are braided
monoidal categories; operads are non-symmetric operads.

• S = braided strict monoidal category monad; monoidal pseudo algebras
are symmetric monoidal categories; operads now have equivariant braid
group actions.

A general class of examples is obtained by starting with a cartesian monad T

on Ĉ (where C is a small category) such that the functor part is parametrically
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representable in the following sense:

Ĉ
T

// Ĉ/T1
∃oo

// Ĉ⊥

When T has this form it is a consequence that one has left adjoints:

Ĉ/X
TX

// Ĉ/TX
LT,Xoo
⊥

for all X. Then regard T as a 2-monad on CAT(Ĉ). For instance if T started life as
the strict ω-category monad on Ĝ, then T -operads in our sense are higher operads
in the sense of Batanin.

In general we have a 2-adjunction

CAT
SpC

// CAT(Ĉ)
Eoo
⊥

given by

E(X) = el(Xop)op SpC(Z) = [(C/−)op
, Z].

and SpC(Set) has a canonical monoidal pseudo T-algebra structure. The pseudo
monoid part of this is inherited from Set’s pseudo monoid structure coming from
cartesian products. The T-algebra part is described as follows. The algebra struc-
ture

a : TSpC(Set)→ SpC(Set)

corresponds by adjointness to a functor

ETSpC(Set)→ Set.

An object of ETSpC(Set) is a map

x : C → TSpC(Set)

which by parametric representability amounts to a map

A→ SpC(Set)

in fact A will be small and discrete as an object of CAT(Ĉ). By adjointness this
last map amounts to

el(A)op → Set

and a(x) is taken to be the limit of this functor.
In the case C = G and T is the strict ω-category monad this general construc-

tion unpacks as follows. An n-cell of SpG(Set) is an n-span of sets. For instance
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2-spans and 3-spans are diagrams of sets and functions with shape

•
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@@
@@
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��
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�

•

�� ''OOOOOOOOOOOOOO •

��wwoooooooooooooo

• •

•

��@
@@

@@
@@

����
��

��
�

•

�� ''OOOOOOOOOOOOOO •

��wwoooooooooooooo

•

�� ''OOOOOOOOOOOOOO •

��wwoooooooooooooo

• •

and

respectively. The pseudo monoid part of SpG(Set)’s monoidal pseudo T-algebra
structure is obtained by componentwise product, and the T-algebra part is obtained
using pullbacks and generalises span composition.

In general we have

CAT(Ĉ)(T1,SpC(Set)) ∼= CAT(ET1,Set)
= CAT(el(T1)op

,Set)

' Ĉ/T1

and in fact a cartesian operad for T : Ĉ→Ĉ in the sense of Eugenia’s talk, is a
T -operad in SpC(Set) in our sense. Note also that

CAT(Ĉ)(1,SpC(Set)) ∼= CAT(E1,Set) = Ĉ

However there are other examples we would like to consider. For instance when
V is a symmetric monoidal category, the n-globular category Σn(V):

1 ...oo
oo 1

oo
oo V

oo
oo

has a monoidal T-algebra structure where T is obtained as above from the strict n-
category monad on Ĝ≤n. So you can consider n-operads within symmetric monoidal
categories!

One can also blend together the presheaf examples with the CAT examples.
Let T be a monad on Ĉ as above with the property that its functor part preserves
coproducts (this is true of the strict ω-category monad for example). Let S be
a cartesian 2-monad on CAT (all our examples were cartesian). Regard S as a
2-monad on CAT(Ĉ) by applying it pointwise. Under these general conditions we
have

Theorem 2.1. There is a distributive law of 2-monads TS→ST and the re-
sulting monad structure on ST is cartesian.

Thus one can consider operads for ST . In particular this gives us braided and
symmetric analogues of Batanin operads.

3. Relating different operad notions via monad functors

In this section the functoriality of the above general operad notion is described.
The example of ΣnV discussed above can be derived formally. Let S be the

symmetric monoidal category 2-monad on CAT and T be the strict n-category
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monad viewed as a 2-monad on CAT(Ĝ≤n). There is a monad functor:

CAT

S

��

Σn // CAT(Ĝ≤n)

T

��
CAT

Σn
// CAT(Ĝ≤n)

φ
v~ tttttt

because
Σn : CAT→ CAT(Ĝ≤n)

lifts through the forgetful 2-functors to a 2-functor

Σn : S-Algs → T -Algs
and in fact Σn induces a canonical 2-functor between 2-categories of monoidal
pseudo algebras.

An S-operad (p, ι, σ) in V gives rise to a T-operad Desφ(p, ι, σ) as follows:

1
η1 //

��

T1

φ1

��

T 21
µ1oo

Tφ1

��
TΣnS1

φS1

��
1

Σnη1 //

Σni

!!B
BB

BB
BB

BB
BB

BB
BB

BB ΣnS1

Σnp

��

ΣnS21
Σnµ1oo

Σn(pS(!)⊗aS(p))

{{xxxxxxxxxxxxxxxxxx

ΣnV

Σnι
+3

Σnσ
ks

If we denote a for the S-algebra structure on V, then induced T-algebra structure
on ΣnV is a′ = Σn(a)φV . The right hand composite one-cell in the above diagram
is equal to

Σn(p)φ1T (!)⊗ a′T (Σn(p)φ1)

so the definition of the operad Desφ(p, ι, σ) parses. The axioms for Desφ(p, ι, σ)
follow easily from those of (p, ι, σ) and the monad functor axioms on φ. In fact this
construction provides a functor

Desφ,V : Op(S,V)→ Op(T,ΣnV)

This formal construction works for any monad functor in place of (Σ, φ) whose
2-functor part preserves finite products. For another example replace T by the
monoid monad on CAT, Σ by the identity on CAT, and take φ to be induced by
the forgetful functor from monoidal categories to symmetric monoidal categories.
Then Desφ is the forgetful functor from the category of operads in V to the category
of non-symmetric operads in V (ie it forgets the symmetric group actions).

For both of the examples discussed here we have:

Theorem 3.1. (Batanin) If V is symmetric monoidal closed and cocomplete;
then Desφ,V has a left adjoint denoted EHφ.
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In the case where V is cartesian closed there is a map

j : ΣnV → SpG≤nV

which picks out terminal k-spans when k < n and sends V ∈ V to the n-span with
V in the top position (and necessarily terminal in the lower levels). This map is
clearly a morphism of monoidal pseudo T-algebras and so induces

j! : Op(T,ΣnV)→ Op(T, SpG≤nV)

given by composition with j. Now as we shall see in the next section ΣnV is
cocomplete as a globular category and this enables us to construct j! a j! using left
kan extensions in the 2-category CAT(Ĝ≤n). Thus we have:

Op(S,V)
Desφ

// Op(T,ΣnV)
j!

//

EHφoo
Op(T, SpG≤nV)

j!oo
⊥ ⊥

Theorem 3.2. (Batanin) Let p be a T-operad in SpG≤nV where V is a cocom-
plete cartesian closed category. Then there is an equivalence between the category
of EHφj

!(p)-algebras and the category of p-algebras with one k-cell for k < n.

For instance this theorem provides an answer to the question: “what is a weak
n-category with one k-cell for k < n?” by providing an operad in Set whose
algebras are such things. Clearly it would be desirable to extend this result to
one that unpacks weak n-categories with one k-cell for k < r≤n, but this time the
answer will be a higher operad.

As before let S be the symmetric monoidal category 2-monad on CAT, now
let T be the strict ω-category monad viewed as a 2-monad on CAT(Ĝ), and fix
a cocomplete cartesian closed category V. A pseudo ST-algebra amounts to a
symmetric pseudo-monoid in the 2-category Ps-T -Alg and clearly SpGV has such
a structure: the symmetric pseudo monoid part is just componentwise cartesian
product of n spans. Moreover a monoidal pseudo ST-algebra is just an ST-algebra
by a version of the Eckmann-Hilton argument (applied to pseudo monoids in a
2-category with cartesian products). From these facts it follows that

Σr : CAT(Ĝ)→ CAT(Ĝ)

lifts an endofunctor of strict ST-algebras and thus corresponds to a monad functor

CAT(Ĝ)

ST

��

Σr // CAT(Ĝ)

ST

��
CAT(Ĝ)

Σr
// CAT(Ĝ)

φ
u} ssssss

Moreover there is a globular functor

j : ΣrSpGV → SpGV

which sends an n− r span X in V to the n-span obtained by putting X in the top
(n− r) positions and with the bottom r positions terminal. As before this is a map
of monoidal pseudo algebras. Thus we have Desφ and j! as above. Describing left
adjoints to j! and Desφ is what remains to be done.

The quest for such descriptions has led to:



APPLICATIONS OF 2-CATEGORICAL ALGEBRA TO THE THEORY OF OPERADS 7

(1) a deeper study of some of the yoneda structures [SW78] that arise in our
2-categories culiminating in the notion of a 2-topos described in [Web07].

(2) isolating conditions on the 2-monads we use culminating in the notion of
analytic 2-functor.

(3) isolating conditions on the monoidal pseudo algebras we consider, culmi-
nating in the notion of distributive monoidal pseudo algebra.
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